These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 8880072)
1. Ptilomycalin A, a novel Na+, K(+)- or Ca2(+)-ATPase inhibitor, competitively interacts with ATP at its binding site. Ohizumi Y; Sasaki S; Kusumi T; Ohtani II Eur J Pharmacol; 1996 Aug; 310(1):95-8. PubMed ID: 8880072 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of ion pump ATPase activity by 3'-O-(4-benzoyl)benzoyl-ATP (BzATP): assessment of BzATP as an active site-directed probe. Tran CM; Farley RA Biochim Biophys Acta; 1986 Aug; 860(1):9-14. PubMed ID: 3015213 [TBL] [Abstract][Full Text] [Related]
3. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y; Yamada S; Nakao M J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400 [TBL] [Abstract][Full Text] [Related]
4. AlF4- reversibly inhibits 'P'-type cation-transport ATPases, possibly by interacting with the phosphate-binding site of the ATPase. Missiaen L; Wuytack F; De Smedt H; Vrolix M; Casteels R Biochem J; 1988 Aug; 253(3):827-33. PubMed ID: 2845938 [TBL] [Abstract][Full Text] [Related]
5. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Vilsen B; Andersen JP Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989 [TBL] [Abstract][Full Text] [Related]
6. Mode of inhibition of brain Na+,K+-ATPase by agelasidines and agelasines from a sea sponge. Kobayashi M; Nakamura H; Wu HM; Kobayashi J; Ohizumi Y Arch Biochem Biophys; 1987 Nov; 259(1):179-84. PubMed ID: 2825594 [TBL] [Abstract][Full Text] [Related]
7. Comparative studies on the ATPase-binding sites in Ca2+-ATPase and (Na+ + K+)-ATPase by the use of ATP-analogues. Schoner W; Serpersu EH; Pauls H; Patzelt-Wenczler R; Kreickmann H; Rempeters G Z Naturforsch C Biosci; 1982; 37(7-8):692-705. PubMed ID: 6291269 [TBL] [Abstract][Full Text] [Related]
8. Order of release of ADP and Pi from phosphoenzyme with bound ADP of Ca2+-dependent ATPase from sarcoplasmic reticulum and of Na+, K+-dependent ATPase studied by ADP-inhibition patterns. Sakamoto J; Tonomura Y J Biochem; 1980 Jun; 87(6):1721-7. PubMed ID: 6249798 [TBL] [Abstract][Full Text] [Related]
9. Interactions of Co(NH3)4ATP and Cr(H2O)4ATP with Ca2+-ATPase from sarcoplasmic reticulum and Mg2+-ATPase and (Na+ + K+)-ATPase from kidney medulla. Gantzer ML; Klevickis C; Grisham CM Biochemistry; 1982 Aug; 21(17):4083-8. PubMed ID: 6127101 [No Abstract] [Full Text] [Related]
10. Comparison of ATP binding in the active sites of (Na+ + K(+)-ATPase, Mg(2+)-ATPase and Ca(2+)-ATPase with low affinity to calcium from cardiac sarcolemma. Monosíková R; Breier A; Ziegelhöffer A; Sima F Bratisl Lek Listy; 1991; 92(3-4):142-5. PubMed ID: 1851462 [TBL] [Abstract][Full Text] [Related]
11. Shift to the Na+ form of Na+/K+-transporting ATPase due to modification of the low-affinity ATP-binding site by Co(NH3)4ATP. Scheiner-Bobis G; Esmann M; Schoner W Eur J Biochem; 1989 Jul; 183(1):173-8. PubMed ID: 2473903 [TBL] [Abstract][Full Text] [Related]
12. Phosphate binding and ATP-binding sites coexist in Na+/K(+)-transporting ATPase, as demonstrated by the inactivating MgPO4 complex analogue Co(NH3)4PO4. Buxbaum E; Schoner W Eur J Biochem; 1991 Jan; 195(2):407-19. PubMed ID: 1847680 [TBL] [Abstract][Full Text] [Related]
13. Amplification of the phosphorylation site-ATP-binding site cDNA fragment of the Na+,K(+)-ATPase and the Ca2(+)-ATPase of Drosophila melanogaster by polymerase chain reaction. Váradi A; Gilmore-Heber M; Benz EJ FEBS Lett; 1989 Dec; 258(2):203-7. PubMed ID: 2557235 [TBL] [Abstract][Full Text] [Related]
14. How do MgATP analogues differentially modify high-affinity and low-affinity ATP binding sites of Na+/K(+)-ATPase? Serpersu EH; Bunk S; Schoner W Eur J Biochem; 1990 Jul; 191(2):397-404. PubMed ID: 2166662 [TBL] [Abstract][Full Text] [Related]
15. Relationship between phospholamban and nucleotide activation of cardiac sarcoplasmic reticulum Ca2+ adenosinetriphosphatase. Coll KE; Johnson RG; McKenna E Biochemistry; 1999 Feb; 38(8):2444-51. PubMed ID: 10029538 [TBL] [Abstract][Full Text] [Related]
16. Kinetic characterization of Na,K-ATPase inhibition by Eosin. Ogan JT; Reifenberger MS; Milanick MA; Gatto C Blood Cells Mol Dis; 2007; 38(3):229-37. PubMed ID: 17331759 [TBL] [Abstract][Full Text] [Related]
17. Interaction of an aromatic dibromoisothiouronium derivative with the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum. Berman MC; Karlish SJ Biochemistry; 2003 Apr; 42(12):3556-66. PubMed ID: 12653560 [TBL] [Abstract][Full Text] [Related]
18. An Na+/K(+)-ATPase inhibitor protein from rat brain cytosol. Chandra S; Adhikary G; Sikdar R; Sen PC Biochim Biophys Acta; 1993 Aug; 1144(1):33-8. PubMed ID: 8394134 [TBL] [Abstract][Full Text] [Related]
19. Demonstration of two different reactive sulfhydryl groups in the ATP-binding sites of Ca2+-ATPase of sarcoplasmic reticulum by disulfides of thioinosine triphosphates. Patzelt-Wenczler R; Kreickmann H; Schoner W Eur J Biochem; 1980 Aug; 109(1):167-75. PubMed ID: 6447597 [TBL] [Abstract][Full Text] [Related]
20. Effects of glycyrrhizin and glycyrrhetinic acid on (Na+ + K+)-ATPase of renal basolateral membranes in vitro. Itoh K; Hara T; Shiraishi T; Taniguchi K; Morimoto S; Onishi T Biochem Int; 1989 Jan; 18(1):81-9. PubMed ID: 2541725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]