These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 8880443)
61. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S; Molina-Jouve C; Guillouet SE; Uribelarrea JL; Goma G; Benbadis L Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [TBL] [Abstract][Full Text] [Related]
62. Characteristics of an immobilized yeast cell system using very high gravity for the fermentation of ethanol. Ji H; Yu J; Zhang X; Tan T Appl Biochem Biotechnol; 2012 Sep; 168(1):21-8. PubMed ID: 21590307 [TBL] [Abstract][Full Text] [Related]
63. Kinetics and mathematical model of ethanol formation by immobilized yeast cells. Li X; Jin N Chin J Biotechnol; 1991; 7(3):229-39. PubMed ID: 1823593 [TBL] [Abstract][Full Text] [Related]
64. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation. Abe A; Furukawa S; Watanabe S; Morinaga Y Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789 [TBL] [Abstract][Full Text] [Related]
65. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Watanabe I; Miyata N; Ando A; Shiroma R; Tokuyasu K; Nakamura T Bioresour Technol; 2012 Nov; 123():695-8. PubMed ID: 22939189 [TBL] [Abstract][Full Text] [Related]
66. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor. Silva CR; Zangirolami TC; Rodrigues JP; Matugi K; Giordano RC; Giordano RL Enzyme Microb Technol; 2012 Jan; 50(1):35-42. PubMed ID: 22133438 [TBL] [Abstract][Full Text] [Related]
67. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae. Mathew AS; Wang J; Luo J; Yau ST Sci Rep; 2015 Oct; 5():15713. PubMed ID: 26514277 [TBL] [Abstract][Full Text] [Related]
68. Increase of ethanol productivity by cell-recycle fermentation of flocculating yeast. Wang FZ; Xie T; Hui M Prikl Biokhim Mikrobiol; 2011; 47(5):579-83. PubMed ID: 22232900 [TBL] [Abstract][Full Text] [Related]
69. Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. De Bari I; De Canio P; Cuna D; Liuzzi F; Capece A; Romano P N Biotechnol; 2013 Sep; 30(6):591-7. PubMed ID: 23454083 [TBL] [Abstract][Full Text] [Related]
70. Calcium alginate gel as encapsulation matrix for coimmobilized enzyme systems. Blandino A; Macías M; Cantero D Appl Biochem Biotechnol; 2003 Jul; 110(1):53-60. PubMed ID: 12909732 [TBL] [Abstract][Full Text] [Related]
71. Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel. Bashari M; Abbas S; Xu X; Jin Z Ultrason Sonochem; 2014 Jul; 21(4):1325-34. PubMed ID: 24582659 [TBL] [Abstract][Full Text] [Related]
72. Ethanol fermentation technologies from sugar and starch feedstocks. Bai FW; Anderson WA; Moo-Young M Biotechnol Adv; 2008; 26(1):89-105. PubMed ID: 17964107 [TBL] [Abstract][Full Text] [Related]
73. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Ho MH; Kuo PY; Hsieh HJ; Hsien TY; Hou LT; Lai JY; Wang DM Biomaterials; 2004 Jan; 25(1):129-38. PubMed ID: 14580916 [TBL] [Abstract][Full Text] [Related]
74. Effective diffusion coefficient of sucrose in calcium alginate gel. Mehmetoğlu U Enzyme Microb Technol; 1990 Feb; 12(2):124-6. PubMed ID: 1366577 [TBL] [Abstract][Full Text] [Related]
75. Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Kopsahelis N; Agouridis N; Bekatorou A; Kanellaki M Bioresour Technol; 2007 May; 98(7):1440-7. PubMed ID: 17157001 [TBL] [Abstract][Full Text] [Related]
76. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
77. Intracellular ethanol accumulation in yeast cells during aerobic fermentation: a Raman spectroscopic exploration. Peng L; Wang G; Liao W; Yao H; Huang S; Li YQ Lett Appl Microbiol; 2010 Dec; 51(6):632-8. PubMed ID: 20958338 [TBL] [Abstract][Full Text] [Related]
78. Immobilized salt-tolerant yeasts: application of a new polyethylene-oxide support in a continuous stirred-tank reactor for flavour production. van der Sluis C; Stoffelen CJ; Castelein SJ; Engbers GH; ter Schure EG; Tramper J; Wijffels RH J Biotechnol; 2001 Jun; 88(2):129-39. PubMed ID: 11403847 [TBL] [Abstract][Full Text] [Related]
79. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors. Nordmeier A; Chidambaram D Appl Biochem Biotechnol; 2016 Apr; 178(8):1503-9. PubMed ID: 26707587 [TBL] [Abstract][Full Text] [Related]
80. Biocompatible porous ceramics for the cultivation of hematopoietic cells. Berthold A; Haibel A; Brandes N; Kroh L; Gross U; Uharek L; Schubert H J Mater Sci Mater Med; 2007 Jul; 18(7):1333-8. PubMed ID: 17221315 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]