These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 8880476)
1. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Russell JB; Wilson DB J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. Russell JB; Muck RE; Weimer PJ FEMS Microbiol Ecol; 2009 Feb; 67(2):183-97. PubMed ID: 19120465 [TBL] [Abstract][Full Text] [Related]
4. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. MouriƱo F; Akkarawongsa R; Weimer PJ J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162 [TBL] [Abstract][Full Text] [Related]
5. Improved animal production by genetic engineering of ruminal bacteria. Brooker JD; Thomson AM; Ward H Australas Biotechnol; 1992 Oct; 2(5):288-91. PubMed ID: 1368926 [TBL] [Abstract][Full Text] [Related]
6. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. Callaway ES; Martin SA J Dairy Sci; 1997 Sep; 80(9):2035-44. PubMed ID: 9313145 [TBL] [Abstract][Full Text] [Related]
7. Studies of Thermobifida fusca plant cell wall degrading enzymes. Wilson DB Chem Rec; 2004; 4(2):72-82. PubMed ID: 15073875 [TBL] [Abstract][Full Text] [Related]
8. Role of phosphorolytic cleavage in cellobiose and cellodextrin metabolism by the ruminal bacterium Prevotella ruminicola. Lou J; Dawson KA; Strobel HJ Appl Environ Microbiol; 1996 May; 62(5):1770-3. PubMed ID: 8633876 [TBL] [Abstract][Full Text] [Related]
9. The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates. Van Kessel JS; Russell JB J Dairy Sci; 1997 Oct; 80(10):2442-8. PubMed ID: 9361216 [TBL] [Abstract][Full Text] [Related]
10. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. Weimer PJ; Waghorn GC; Odt CL; Mertens DR J Dairy Sci; 1999 Jan; 82(1):122-34. PubMed ID: 10022014 [TBL] [Abstract][Full Text] [Related]
11. Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria. Smith CJ; Hespell RB J Dairy Sci; 1983 Jul; 66(7):1536-46. PubMed ID: 6350393 [TBL] [Abstract][Full Text] [Related]
12. [The dynamics of microorganism populations and fermentation characters of co-cultures of rumen fungi and cellulolytic bacteria on different substrates]. Sun YZ; Mao SY; Yao W; Zhu WY Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):422-6. PubMed ID: 16933613 [TBL] [Abstract][Full Text] [Related]
13. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Chiquette J; Allison MJ; Rasmussen MA J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612 [TBL] [Abstract][Full Text] [Related]
14. Cellulose and cellodextrin utilization by the cellulolytic bacterium Cytophaga hutchisonii. Zhu Y; Li H; Zhou H; Chen G; Liu W Bioresour Technol; 2010 Aug; 101(16):6432-7. PubMed ID: 20362433 [TBL] [Abstract][Full Text] [Related]
15. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Russell JB Appl Environ Microbiol; 1985 Mar; 49(3):572-6. PubMed ID: 3994365 [TBL] [Abstract][Full Text] [Related]
16. Why do many ruminal bacteria die and lyse so quickly? Wells JE; Russell JB J Dairy Sci; 1996 Aug; 79(8):1487-95. PubMed ID: 8880474 [TBL] [Abstract][Full Text] [Related]
17. Interactions of microbial populations in cellulose fermentation. Wolin MJ; Miller TL Fed Proc; 1983 Jan; 42(1):109-13. PubMed ID: 6848372 [TBL] [Abstract][Full Text] [Related]