BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8880739)

  • 1. Salt loading abolishes osmotically stimulated vasopressin release within the supraoptic nucleus.
    Ludwig M; Williams K; Callahan MF; Morris M
    Neurosci Lett; 1996 Aug; 215(1):1-4. PubMed ID: 8880739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baroreceptor input regulates osmotic control of central vasopressin secretion.
    Callahan MF; Ludwig M; Tsai KP; Sim LJ; Morris M
    Neuroendocrinology; 1997 Apr; 65(4):238-45. PubMed ID: 9142995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of tetrodotoxin on osmotically stimulated central and peripheral vasopressin and oxytocin release.
    Ludwig M; Callahan MF; Morris M
    Neuroendocrinology; 1995 Dec; 62(6):619-27. PubMed ID: 8751288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural input modulates osmotically stimulated release of vasopressin into the supraoptic nucleus.
    Ludwig M; Callahan MF; Landgraf R; Johnson AK; Morris M
    Am J Physiol; 1996 May; 270(5 Pt 1):E787-92. PubMed ID: 8967466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vasopressin autoreceptors and nitric oxide-dependent glutamate release are required for somatodendritic vasopressin release from rat magnocellular neuroendocrine cells responding to osmotic stimuli.
    Gillard ER; Coburn CG; de Leon A; Snissarenko EP; Bauce LG; Pittman QJ; Hou B; Currás-Collazo MC
    Endocrinology; 2007 Feb; 148(2):479-89. PubMed ID: 17082256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systemic osmotic stimulation increases vasopressin and oxytocin release within the supraoptic nucleus.
    Ludwig M; Callahan MF; Neumann I; Landgraf R; Morris M
    J Neuroendocrinol; 1994 Aug; 6(4):369-73. PubMed ID: 7987366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dietary exposure to aroclor 1254 alters central and peripheral vasopressin release in response to dehydration in the rat.
    Coburn CG; Gillard ER; Currás-Collazo MC
    Toxicol Sci; 2005 Mar; 84(1):149-56. PubMed ID: 15574674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous microdialysis in blood and brain: oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat.
    Neumann I; Ludwig M; Engelmann M; Pittman QJ; Landgraf R
    Neuroendocrinology; 1993 Dec; 58(6):637-45. PubMed ID: 8127393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central angiotensin-(1-7) increases osmotic thirst.
    Dos-Santos RC; Monteiro LDRN; Paes-Leme B; Lustrino D; Antunes-Rodrigues J; Mecawi AS; Reis LC
    Exp Physiol; 2017 Nov; 102(11):1397-1404. PubMed ID: 28833692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotransmitter regulation of c-fos and vasopressin gene expression in the rat supraoptic nucleus.
    Kawasaki M; Ponzio TA; Yue C; Fields RL; Gainer H
    Exp Neurol; 2009 Sep; 219(1):212-22. PubMed ID: 19463813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the central vasopressin and oxytocin axis after lesion of a brain osmotic sensory region.
    Oliveira GR; Franci CR; Rodovalho GV; Franci JA; Morris M; Rocha MJ
    Brain Res Bull; 2004 Jul; 63(6):515-20. PubMed ID: 15249117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of vagotomy, splanchnic nerve lesion, and fluorocitrate on the transmission of acute hyperosmotic stress signals to the supraoptic nucleus.
    Xiong Y; Liu R; Xu Y; Duan L; Cao R; Tu L; Li Z; Zhao G; Rao Z
    J Neurosci Res; 2011 Feb; 89(2):256-66. PubMed ID: 21162132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential responses of oxytocin and vasopressin neurons to the osmotic and stressful components of hypertonic saline injections: a Fos protein double labeling study.
    Xiong JJ; Hatton GI
    Brain Res; 1996 May; 719(1-2):143-53. PubMed ID: 8782874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of magnocellular vasopressin responses to non-osmotic stress after chronic adrenal demedullation in rats.
    Aguilera G; Kiss A
    J Neuroendocrinol; 1993 Oct; 5(5):501-7. PubMed ID: 8680417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NO inhibition of the magnocellular neuroendocrine system in rats is independent of cGMP signaling pathway.
    Terrell ML; Salas N; Bui V; Summy-Long JY; Kadekaro M
    Exp Neurol; 2003 Dec; 184(2):846-56. PubMed ID: 14769377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of connexin43 in the acute hyperosmotic stimulus‑induced synthesis and release of vasopressin in the supraoptic nucleus of rats.
    Jiang S; Wang YQ; Xu CF; Li YN; Guo R; Li L
    Mol Med Rep; 2014 Oct; 10(4):2165-71. PubMed ID: 25050982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vasopressinergic neurons of the supraoptic nucleus in perinatal rats: reaction to osmotic stimulation and its regulation.
    Abramova MA; Calas A; Ugrumov M
    Brain Struct Funct; 2011 Jan; 215(3-4):195-207. PubMed ID: 21113619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin-1beta release in the supraoptic nucleus area during osmotic stimulation requires neural function.
    Summy-Long JY; Hu S; Long A; Phillips TM
    J Neuroendocrinol; 2008 Nov; 20(11):1224-32. PubMed ID: 18752652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus.
    Summy-Long JY; Hu S
    Am J Physiol Regul Integr Comp Physiol; 2009 Nov; 297(5):R1532-45. PubMed ID: 19759333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of salt loading on the organisation of microtubules in rat magnocellular vasopressin neurones.
    Hicks AI; Barad Z; Sobrero A; Lean G; Jacob-Tomas S; Yang J; Choe KY; Prager-Khoutorsky M
    J Neuroendocrinol; 2020 Feb; 32(2):e12817. PubMed ID: 31778225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.