These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8880910)
1. Identification of protein kinase A phosphorylation sites on NBD1 and R domains of CFTR using electrospray mass spectrometry with selective phosphate ion monitoring. Townsend RR; Lipniunas PH; Tulk BM; Verkman AS Protein Sci; 1996 Sep; 5(9):1865-73. PubMed ID: 8880910 [TBL] [Abstract][Full Text] [Related]
2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain. Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047 [TBL] [Abstract][Full Text] [Related]
3. Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Neville DC; Rozanas CR; Price EM; Gruis DB; Verkman AS; Townsend RR Protein Sci; 1997 Nov; 6(11):2436-45. PubMed ID: 9385646 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
5. Preferential phosphorylation of R-domain Serine 768 dampens activation of CFTR channels by PKA. Csanády L; Seto-Young D; Chan KW; Cenciarelli C; Angel BB; Qin J; McLachlin DT; Krutchinsky AN; Chait BT; Nairn AC; Gadsby DC J Gen Physiol; 2005 Feb; 125(2):171-86. PubMed ID: 15657296 [TBL] [Abstract][Full Text] [Related]
6. cAMP-dependent protein kinase-mediated phosphorylation of cystic fibrosis transmembrane conductance regulator residue Ser-753 and its role in channel activation. Seibert FS; Tabcharani JA; Chang XB; Dulhanty AM; Mathews C; Hanrahan JW; Riordan JR J Biol Chem; 1995 Feb; 270(5):2158-62. PubMed ID: 7530719 [TBL] [Abstract][Full Text] [Related]
7. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Wang W; He Z; O'Shaughnessy TJ; Rux J; Reenstra WW Am J Physiol Cell Physiol; 2002 May; 282(5):C1170-80. PubMed ID: 11940532 [TBL] [Abstract][Full Text] [Related]
8. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C. Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895 [TBL] [Abstract][Full Text] [Related]
9. Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Seibert FS; Chang XB; Aleksandrov AA; Clarke DM; Hanrahan JW; Riordan JR Biochim Biophys Acta; 1999 Dec; 1461(2):275-83. PubMed ID: 10581361 [TBL] [Abstract][Full Text] [Related]
10. R-Domain Phosphorylation by Protein Kinase A Stimulates Dissociation of Unhydrolyzed ATP from the First Nucleotide-Binding Site of the Cystic Fibrosis Transmembrane Conductance Regulator. Aleksandrov LA; Fay JF; Riordan JR Biochemistry; 2018 Aug; 57(34):5073-5075. PubMed ID: 30109929 [TBL] [Abstract][Full Text] [Related]
11. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Baker JM; Hudson RP; Kanelis V; Choy WY; Thibodeau PH; Thomas PJ; Forman-Kay JD Nat Struct Mol Biol; 2007 Aug; 14(8):738-45. PubMed ID: 17660831 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. Rich DP; Berger HA; Cheng SH; Travis SM; Saxena M; Smith AE; Welsh MJ J Biol Chem; 1993 Sep; 268(27):20259-67. PubMed ID: 7690753 [TBL] [Abstract][Full Text] [Related]
13. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Neville DC; Rozanas CR; Tulk BM; Townsend RR; Verkman AS Biochemistry; 1998 Feb; 37(8):2401-9. PubMed ID: 9485388 [TBL] [Abstract][Full Text] [Related]
14. Modulation of protein kinase CK2 activity by fragments of CFTR encompassing F508 may reflect functional links with cystic fibrosis pathogenesis. Pagano MA; Arrigoni G; Marin O; Sarno S; Meggio F; Treharne KJ; Mehta A; Pinna LA Biochemistry; 2008 Jul; 47(30):7925-36. PubMed ID: 18597485 [TBL] [Abstract][Full Text] [Related]
15. The major cystic fibrosis causing mutation exhibits defective propensity for phosphorylation. Pasyk S; Molinski S; Ahmadi S; Ramjeesingh M; Huan LJ; Chin S; Du K; Yeger H; Taylor P; Moran MF; Bear CE Proteomics; 2015 Jan; 15(2-3):447-61. PubMed ID: 25330774 [TBL] [Abstract][Full Text] [Related]
16. Detection of phospho-sites generated by protein kinase CK2 in CFTR: mechanistic aspects of Thr1471 phosphorylation. Venerando A; Franchin C; Cant N; Cozza G; Pagano MA; Tosoni K; Al-Zahrani A; Arrigoni G; Ford RC; Mehta A; Pinna LA PLoS One; 2013; 8(9):e74232. PubMed ID: 24058532 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of CFTR activity by its phosphorylated R domain. Winter MC; Welsh MJ Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845 [TBL] [Abstract][Full Text] [Related]
19. A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. Xie J; Adams LM; Zhao J; Gerken TA; Davis PB; Ma J J Biol Chem; 2002 Jun; 277(25):23019-27. PubMed ID: 11950844 [TBL] [Abstract][Full Text] [Related]
20. Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry. Cleverley KE; Betts JC; Blackstock WP; Gallo JM; Anderton BH Biochemistry; 1998 Mar; 37(11):3917-30. PubMed ID: 9521713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]