These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 8881559)

  • 1. Double heterozygosity of chromosomal inversion in mice: a key to speciation.
    Rumpler Y
    Arch Anat Histol Embryol; 1993-1994; 75():101-10. PubMed ID: 8881559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A pachytene analysis of two male-fertile paracentric inversions in chromosome 1 of the mouse and in the male-sterile double heterozygote.
    Chandley AC
    Chromosoma; 1982; 85(1):127-35. PubMed ID: 7094697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosomal speciation of humans and chimpanzees revisited: studies of DNA divergence within inverted regions.
    Szamalek JM; Cooper DN; Hoegel J; Hameister H; Kehrer-Sawatzki H
    Cytogenet Genome Res; 2007; 116(1-2):53-60. PubMed ID: 17268178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex, compound inversion/translocation polymorphism in an ape: presumptive intermediate stage in the karyotypic evolution of the agile gibbon Hylobates agilis.
    Van Tuinen P; Mootnick AR; Kingswood SC; Hale DW; Kumamoto AT
    Am J Phys Anthropol; 1999 Oct; 110(2):129-42. PubMed ID: 10502239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Genetic control of chromosome synapsis in mice heterozygous for a paracentric inversion].
    Borodin PM; Ladygina TIu; Rodionova MI; Zhelezova AI; Zykovich AS; Aksenovich TI
    Genetika; 2005 Jun; 41(6):746-52. PubMed ID: 16080598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Male sterility and double heterozygosity for chromosomal inversion.
    Rumpler Y; Gabriel-Robez O; Volobouev V; Yu W; Rasamimanana P; de Perdigo A
    Cytogenet Cell Genet; 1995; 69(1-2):66-70. PubMed ID: 7835090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Male common shrews (Sorex araneus) with long meiotic chain configurations can be fertile: implications for chromosomal models of speciation.
    Mercer SJ; Wallace BM; Searle JB
    Cytogenet Cell Genet; 1992; 60(1):68-73. PubMed ID: 1582263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of an existing chromosomal inversion to engineer a balancer for mouse chromosome 15.
    Chick WS; Mentzer SE; Carpenter DA; Rinchik EM; You Y
    Genetics; 2004 Jun; 167(2):889-95. PubMed ID: 15238537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution. Chromosomal speciation in primates.
    Rieseberg LH; Livingstone K
    Science; 2003 Apr; 300(5617):267-8. PubMed ID: 12690181
    [No Abstract]   [Full Text] [Related]  

  • 10. Impact of trisomy on fertility and meiosis in male mice.
    Davisson M; Akeson E; Schmidt C; Harris B; Farley J; Handel MA
    Hum Reprod; 2007 Feb; 22(2):468-76. PubMed ID: 17050550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Paracentric inversions of human chromosomes and their risks].
    Balícek P
    Cas Lek Cesk; 2004; 143(1):35-8. PubMed ID: 15061117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pericentric inversion of human chromosomes and its risks] ].
    Balícek P
    Cas Lek Cesk; 2001 Feb; 140(2):38-42. PubMed ID: 11262905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Speciation and chromosomal evolution of the Baikalian endemic chironomids of the genus Sergentia Kief. (Diptera, Chironomidae): karyotype divergence and chromosomal polymorphism in the populations of deep-water species Sergentia nebulosa Linevitsh et al. and Sergentia assimilis Proviz V. et Proviz L].
    Proviz VI
    Genetika; 2008 Dec; 44(12):1627-37. PubMed ID: 19178081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CYTOGENETIC ANALYSIS OF CHROMOSOMAL INTERMEDIATES FROM A HYBRID ZONE BETWEEN TWO CHROMOSOME RACES OF THE SCELOPORUS GRAMMICUS COMPLEX (SAURIA, PHRYNOSOMATIDAE).
    Reed KM; Greenbaum IF; Sites JW
    Evolution; 1995 Feb; 49(1):37-47. PubMed ID: 28593663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic reproductive risk in inversion carriers.
    Anton E; Vidal F; Egozcue J; Blanco J
    Fertil Steril; 2006 Mar; 85(3):661-6. PubMed ID: 16500335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: structural heterozygosity in an Australian spider.
    Sharp HE; Rowell DM
    J Evol Biol; 2007 Nov; 20(6):2427-39. PubMed ID: 17908166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meiotic segregation analysis in spermatozoa of pericentric inversion carriers using fluorescence in-situ hybridization.
    Morel F; Laudier B; Guérif F; Couet ML; Royère D; Roux C; Bresson JL; Amice V; De Braekeleer M; Douet-Guilbert N
    Hum Reprod; 2007 Jan; 22(1):136-41. PubMed ID: 16917123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Evaluation of the effect of pollen irradiation on karyotype variability in cotton plants].
    Sanam'ian MF
    Genetika; 2003 Jul; 39(7):947-55. PubMed ID: 12942779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viabilities of originally natural O-chromosomal inversion homo- and heterokaryotypes in Drosophila subobscura.
    Zivanovic G; Marinkovic D
    Hereditas; 2003; 139(2):128-42. PubMed ID: 15061814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further examination of the production-line hypothesis in mouse foetal oocytes. I. Inversion heterozygotes.
    Tease C; Fisher G
    Chromosoma; 1986; 93(5):447-52. PubMed ID: 3720424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.