These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 8882371)
1. Effect of traditional processing of cassava on the cyanide content of gari and cassava flour. Kemdirim OC; Chukwu OA; Achinewhu SC Plant Foods Hum Nutr; 1995 Dec; 48(4):335-9. PubMed ID: 8882371 [TBL] [Abstract][Full Text] [Related]
2. Physicochemical properties and garification (gari yield) of selected cassava cultivars in Rivers State, Nigeria. Achinewhu SC; Barber LI; Ijeoma IO Plant Foods Hum Nutr; 1998; 52(2):133-40. PubMed ID: 9839812 [TBL] [Abstract][Full Text] [Related]
3. Loss of residual cyanogens in a cassava food during short-term storage. Onabolu AO; Oluwole OS; Bokanga M Int J Food Sci Nutr; 2002 Jul; 53(4):343-9. PubMed ID: 12090030 [TBL] [Abstract][Full Text] [Related]
4. Reduction of cyanide levels in cassava during sequential sundrying and solid state fermentation. Zvauya R; Muzondo MI Int J Food Sci Nutr; 1995 Feb; 46(1):13-6. PubMed ID: 7712337 [TBL] [Abstract][Full Text] [Related]
5. Effect of fungi fermentation on organoleptic properties, energy content and in-vitro multienzyme digestibility of cassava products (flour & gari). Akindahunsi AA; Oboh G Nutr Health; 2003; 17(2):131-8. PubMed ID: 14653508 [TBL] [Abstract][Full Text] [Related]
6. Coumarin compounds in cassava diets: 2 health implications of scopoletin in gari. Obidoa O; Obasi SC Plant Foods Hum Nutr; 1991 Jul; 41(3):283-9. PubMed ID: 1924193 [TBL] [Abstract][Full Text] [Related]
7. Occupational exposure to hydrogen cyanide during large-scale cassava processing, in Alagoas State, Brazil. Zacarias CH; Esteban C; Rodrigues GL; Nascimento ES Cad Saude Publica; 2017 Jul; 33(7):e00073416. PubMed ID: 28767959 [TBL] [Abstract][Full Text] [Related]
8. Cyanide detoxification in cassava for food and feed uses. Padmaja G Crit Rev Food Sci Nutr; 1995 Jul; 35(4):299-339. PubMed ID: 7576161 [TBL] [Abstract][Full Text] [Related]
9. Biochemical changes in micro-fungi fermented cassava flour produced from low- and medium-cyanide variety of cassava tubers. Oboh G; Oladunmoye MK Nutr Health; 2007; 18(4):355-67. PubMed ID: 18087867 [TBL] [Abstract][Full Text] [Related]
10. Cyanogenic potential of cassava flour: field trial in Mozambique of a simple kit. Cardoso AP; Ernesto M; Cliff J; Egan SV; Bradbury JH Int J Food Sci Nutr; 1998 Mar; 49(2):93-9. PubMed ID: 9713579 [TBL] [Abstract][Full Text] [Related]
11. The clinicopathologic significance of enriching grated cassava mash with red palm oil in the production of gari. Ihedioha JI Plant Foods Hum Nutr; 2002; 57(3-4):295-305. PubMed ID: 12602937 [TBL] [Abstract][Full Text] [Related]
12. Impact of style of processing on retention and bioaccessibility of beta-carotene in cassava (Manihot esculanta, Crantz). Thakkar SK; Huo T; Maziya-Dixon B; Failla ML J Agric Food Chem; 2009 Feb; 57(4):1344-8. PubMed ID: 19199597 [TBL] [Abstract][Full Text] [Related]
13. Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed. Tweyongyere R; Katongole I Vet Hum Toxicol; 2002 Dec; 44(6):366-9. PubMed ID: 12458644 [TBL] [Abstract][Full Text] [Related]
14. A survey of total hydrocyanic acid content in ready-to-eat cassava-based chips obtained in the Australian market in 2008. Miles D; Jansson E; Mai MC; Azer M; Day P; Shadbolt C; Stitt V; Kiermeier A; Szabo E J Food Prot; 2011 Jun; 74(6):980-5. PubMed ID: 21669076 [TBL] [Abstract][Full Text] [Related]
15. Characterization of yellow root cassava and food products: investigation of cyanide and β-carotene concentrations. Odoemelam CS; Percival B; Ahmad Z; Chang MW; Scholey D; Burton E; Okafor PN; Wilson PB BMC Res Notes; 2020 Jul; 13(1):333. PubMed ID: 32653027 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of wetting method for control of konzo and reduction of cyanide poisoning by removal of cyanogens from cassava flour. Banea JP; Bradbury JH; Mandombi C; Nahimana D; Denton IC; Kuwa N; Tshala Katumbay D Food Nutr Bull; 2014 Mar; 35(1):28-32. PubMed ID: 24791576 [TBL] [Abstract][Full Text] [Related]
17. Particle size distribution of hydrocyanic acid in gari, a cassava-based product. Maduagwu EN; Fafunso M Toxicol Lett; 1980 Dec; 7(2):171-4. PubMed ID: 6270847 [TBL] [Abstract][Full Text] [Related]
18. A comparative evaluation of the macronutrient and micronutrient profiles of soybean-fortified gari and tapioca. Kolapo AL; Sanni MO Food Nutr Bull; 2009 Mar; 30(1):90-4. PubMed ID: 19445264 [TBL] [Abstract][Full Text] [Related]
19. Pro-vitamin A carotenoids stability and bioaccessibility from elite selection of biofortified cassava roots (Manihot esculenta, Crantz) processed to traditional flours and porridges. Aragón IJ; Ceballos H; Dufour D; Ferruzzi MG Food Funct; 2018 Sep; 9(9):4822-4835. PubMed ID: 30131983 [TBL] [Abstract][Full Text] [Related]
20. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]