These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 888238)
21. THE DETERMINATION OF MAGNIFICATION IN THE ELECTRON MICROSCOPE. I. INSTRUMENTAL FACTORS INFLUENCING THE ESTIMATE OF MAGNIFICATION. REISNER JH Lab Invest; 1965 Jun; 14():875-9. PubMed ID: 14317052 [No Abstract] [Full Text] [Related]
22. Adaptive aberration correction using a triode hyperbolic electron mirror. Fitzgerald JP; Word RC; Könenkamp R Ultramicroscopy; 2011; 111(9-10):1495-503. PubMed ID: 21930022 [TBL] [Abstract][Full Text] [Related]
23. [Contribution on the infraocular optics (author's transl)]. Werner H; Ostholt H; Gernet H Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1976 May; 199(3):281-91. PubMed ID: 1084711 [TBL] [Abstract][Full Text] [Related]
24. Aberration reduction and unique light focusing in a photonic crystal negative refractive lens. Asatsuma T; Baba T Opt Express; 2008 Jun; 16(12):8711-9. PubMed ID: 18545584 [TBL] [Abstract][Full Text] [Related]
25. Iterative reconstruction of projection images from a microlens-based optical detector. Cao L; Peter J Opt Express; 2011 Jun; 19(13):11932-43. PubMed ID: 21716427 [TBL] [Abstract][Full Text] [Related]
26. Ponderomotive electron acceleration in a silicon-based nanoplasmonic waveguide. Sederberg S; Elezzabi AY Phys Rev Lett; 2014 Oct; 113(16):167401. PubMed ID: 25361278 [TBL] [Abstract][Full Text] [Related]
27. Assessment of integration of off-axis Fresnel lenses into a free-space interconnect. Ménard M; Kirk AG Appl Opt; 2007 Oct; 46(30):7500-5. PubMed ID: 17952188 [TBL] [Abstract][Full Text] [Related]
28. Design of secondary optics for IRED in active night vision systems. Xin D; Liu H; Jing L; Wang Y; Xu W; Lu Z Opt Express; 2013 Jan; 21(1):1113-20. PubMed ID: 23389004 [TBL] [Abstract][Full Text] [Related]
29. The contributions of Otto Scherzer (1909-1982) to the development of the electron microscope. Marko M; Rose H Microsc Microanal; 2010 Aug; 16(4):366-74. PubMed ID: 20569527 [TBL] [Abstract][Full Text] [Related]
30. Large-aperture automatic focimeter for the measurement of optical power and other optical characteristics of ophthalmic lenses. Gnanvo K; Wu ZY; de Bougrenet de la Tocnaye JL; Liu L Appl Opt; 2002 Oct; 41(28):5997-6005. PubMed ID: 12371562 [TBL] [Abstract][Full Text] [Related]
31. Effects of optical variables in immersion lens-based near-field optics. Kim WC; Yoon YJ; Choi H; Park NC; Park YP Opt Express; 2008 Sep; 16(18):13933-48. PubMed ID: 18773004 [TBL] [Abstract][Full Text] [Related]
32. Ultrafast monoenergetic electron source by optical waveform control of surface plasmons. Dombi P; Rácz P Opt Express; 2008 Mar; 16(5):2887-93. PubMed ID: 18542373 [TBL] [Abstract][Full Text] [Related]
33. Aspheric lenses for terahertz imaging. Lo YH; Leonhardt R Opt Express; 2008 Sep; 16(20):15991-8. PubMed ID: 18825237 [TBL] [Abstract][Full Text] [Related]
37. Optical design of low index intraocular lenses. Atchison DA J Cataract Refract Surg; 1991 May; 17(3):292-300. PubMed ID: 1861243 [TBL] [Abstract][Full Text] [Related]
38. A reflection on partial coherence in electron microscopy. Fertig J; Rose H Ultramicroscopy; 1977 Apr; 2(2-3):269-79. PubMed ID: 888245 [TBL] [Abstract][Full Text] [Related]
39. Determination of the wave aberration of electron lenses from superposition diffractograms of images with differently tilted illumination. Typke D; Köstler D Ultramicroscopy; 1977 Apr; 2(2-3):285-95. PubMed ID: 888247 [No Abstract] [Full Text] [Related]
40. Four-group stabilized zoom lens design of two focal-length-variable elements. Hao Q; Cheng X; Du K Opt Express; 2013 Mar; 21(6):7758-67. PubMed ID: 23546157 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]