These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Nuclear genes resolve mesozoic-aged divergences in the insect order Lepidoptera. Wiegmann BM; Mitter C; Regier JC; Friedlander TP; Wagner DM; Nielsen ES Mol Phylogenet Evol; 2000 May; 15(2):242-59. PubMed ID: 10837154 [TBL] [Abstract][Full Text] [Related]
3. Phylogenetic utility of the nuclear gene dopa decarboxylase in noctuoid moths (Insecta: Lepidoptera: noctuoidea). Fang QQ; Mitchell A; Regier JC; Mitter C; Friedlander TP; Poole RW Mol Phylogenet Evol; 2000 Jun; 15(3):473-86. PubMed ID: 10860655 [TBL] [Abstract][Full Text] [Related]
4. Gelechioidea (Insecta: Lepidoptera) systematics: a reexamination using combined morphology and mitochondrial DNA data. Bucheli SR; Wenzel J Mol Phylogenet Evol; 2005 May; 35(2):380-94. PubMed ID: 15804410 [TBL] [Abstract][Full Text] [Related]
5. A highly conserved nuclear gene for low-level phylogenetics: elongation factor-1 alpha recovers morphology-based tree for heliothine moths. Cho S; Mitchell A; Regier JC; Mitter C; Poole RW; Friedlander TP; Zhao S Mol Biol Evol; 1995 Jul; 12(4):650-6. PubMed ID: 7659020 [TBL] [Abstract][Full Text] [Related]
6. Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Ortí G; Meyer A Mol Biol Evol; 1996 Apr; 13(4):556-73. PubMed ID: 8882499 [TBL] [Abstract][Full Text] [Related]
7. Phylogenetic utility of elongation factor-1 alpha in noctuoidea (Insecta: Lepidoptera): the limits of synonymous substitution. Mitchell A; Cho S; Regier JC; Mitter C; Poole RW; Matthews M Mol Biol Evol; 1997 Apr; 14(4):381-90. PubMed ID: 9100368 [TBL] [Abstract][Full Text] [Related]
8. Evolution of the mitochondrial cytochrome oxidase II gene in collembola. Frati F; Simon C; Sullivan J; Swofford DL J Mol Evol; 1997 Feb; 44(2):145-58. PubMed ID: 9069175 [TBL] [Abstract][Full Text] [Related]
9. First characterization of an archaeal GTP-dependent phosphoenolpyruvate carboxykinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Fukuda W; Fukui T; Atomi H; Imanaka T J Bacteriol; 2004 Jul; 186(14):4620-7. PubMed ID: 15231795 [TBL] [Abstract][Full Text] [Related]
10. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Agca C; Greenfield RB; Hartwell JR; Donkin SS Physiol Genomics; 2002 Oct; 11(2):53-63. PubMed ID: 12388798 [TBL] [Abstract][Full Text] [Related]
11. The major opsin in bees (Insecta: Hymenoptera): A promising nuclear gene for higher level phylogenetics. Mardulyn P; Cameron SA Mol Phylogenet Evol; 1999 Jul; 12(2):168-76. PubMed ID: 10381319 [TBL] [Abstract][Full Text] [Related]
12. Effect of hyperosmotic shock on phosphoenolpyruvate carboxykinase gene expression and gluconeogenic activity in the crab muscle. Schein V; Waché Y; Etges R; Kucharski LC; van Wormhoudt A; Da Silva RS FEBS Lett; 2004 Mar; 561(1-3):202-6. PubMed ID: 15013778 [TBL] [Abstract][Full Text] [Related]
13. Resolving arthropod phylogeny: exploring phylogenetic signal within 41 kb of protein-coding nuclear gene sequence. Regier JC; Shultz JW; Ganley AR; Hussey A; Shi D; Ball B; Zwick A; Stajich JE; Cummings MP; Martin JW; Cunningham CW Syst Biol; 2008 Dec; 57(6):920-38. PubMed ID: 19085333 [TBL] [Abstract][Full Text] [Related]
14. Archaebacterial relationships of the phosphoenolpyruvate carboxykinase gene reveal mosaicism of Giardia intestinalis core metabolism. Suguri S; Henze K; Sánchez LB; Moore DV; Müller M J Eukaryot Microbiol; 2001; 48(4):493-7. PubMed ID: 11456327 [TBL] [Abstract][Full Text] [Related]
15. Evolution and phylogenetic utility of the period gene in Lepidoptera. Regier JC; Fang QQ; Mitter C; Peigler RS; Friedlander TP; Solis MA Mol Biol Evol; 1998 Sep; 15(9):1172-82. PubMed ID: 9729881 [TBL] [Abstract][Full Text] [Related]
16. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Fenn JD; Song H; Cameron SL; Whiting MF Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078 [TBL] [Abstract][Full Text] [Related]
17. Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Wild AL; Maddison DR Mol Phylogenet Evol; 2008 Sep; 48(3):877-91. PubMed ID: 18644735 [TBL] [Abstract][Full Text] [Related]
18. Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Duennes MA; Lozier JD; Hines HM; Cameron SA Mol Phylogenet Evol; 2012 Jul; 64(1):219-31. PubMed ID: 22521295 [TBL] [Abstract][Full Text] [Related]
19. Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Miya M; Nishida M Mol Phylogenet Evol; 2000 Dec; 17(3):437-55. PubMed ID: 11133198 [TBL] [Abstract][Full Text] [Related]
20. Incongruence of mitochondrial and nuclear gene trees in the Carabid beetles Ohomopterus. Sota T; Vogler AP Syst Biol; 2001 Feb; 50(1):39-59. PubMed ID: 12116593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]