BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 8882715)

  • 1. Characterization of NADPH-dependent ubiquinone reductase activity in rat liver cytosol: effect of various factors on ubiquinone-reducing activity and discrimination from other quinone reductases.
    Takahashi T; Okamoto T; Kishi T
    J Biochem; 1996 Feb; 119(2):256-63. PubMed ID: 8882715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant roles of cellular ubiquinone and related redox cycles: potentiated resistance of rat hepatocytes having stimulated NADPH-dependent ubiquinone reductase against hydrogen peroxide toxicity.
    Takahashi T; Hohda T; Sugimoto N; Mizobuchi S; Okamoto T; Mori K; Kishi T
    Biol Pharm Bull; 1999 Nov; 22(11):1226-33. PubMed ID: 10598033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel ubiquinone reductase activity in rat cytosol.
    Takahashi T; Shitashige M; Okamoto T; Kishi T; Goshima K
    FEBS Lett; 1992 Dec; 314(3):331-4. PubMed ID: 1468565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation.
    Takahashi T; Yamaguchi T; Shitashige M; Okamoto T; Kishi T
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):883-90. PubMed ID: 7639706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytosolic NADPH-UQ reductase, the enzyme responsible for cellular ubiquinone redox cycle as an endogenous antioxidant in the rat liver.
    Kishi T; Takahashi T; Usui A; Hashizume N; Okamoto T
    Biofactors; 1999; 9(2-4):189-97. PubMed ID: 10416031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular antioxidant defense by a ubiquinol-regenerating system coupled with cytosolic NADPH-dependent ubiquinone reductase: protective effect against carbon tetrachloride-induced hepatotoxicity in the rat.
    Takahashi T; Sugimoto N; Takahata K; Okamoto T; Kishi T
    Biol Pharm Bull; 1996 Aug; 19(8):1005-12. PubMed ID: 8874805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat.
    Kishi T; Takahashi T; Okamoto T
    Mol Aspects Med; 1997; 18 Suppl():S71-7. PubMed ID: 9266508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dicumarol, a Nad(P)h: quinone acceptor oxidoreductase 1 (DT-diaphorase) inhibitor on ubiquinone redox cycling in cultured rat hepatocytes.
    Kishi T; Takahashi T; Mizobuchi S; Mori K; Okamoto T
    Free Radic Res; 2002 Apr; 36(4):413-9. PubMed ID: 12069105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquinone redox cycle as a cellular antioxidant defense system.
    Kishi T; Takahashi T; Usui A; Okamoto T
    Biofactors; 1999; 10(2-3):131-8. PubMed ID: 10609874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity.
    De Flora S; Morelli A; Basso C; Romano M; Serra D; De Flora A
    Cancer Res; 1985 Jul; 45(7):3188-96. PubMed ID: 4005852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells.
    Takahashi T; Okuno M; Okamoto T; Kishi T
    Biofactors; 2008; 32(1-4):59-70. PubMed ID: 19096101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of NAD(P)H-dependent ubiquinone reductase activities in rat liver microsomes.
    Shigemura T; Kang D; Nagata-Kuno K; Takeshige K; Hamasaki N
    Biochim Biophys Acta; 1993 Mar; 1141(2-3):213-20. PubMed ID: 8443209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of superoxide dismutase-insensitive cytochrome c reductase activity in HL-60 cytosol as NADPH-cytochrome P450 reductase.
    Nisimoto Y; Otsuka-Murakami H; Iwata S; Isogai Y; Iizuka T
    Arch Biochem Biophys; 1993 May; 302(2):315-21. PubMed ID: 8489236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of chromium(VI) to chromium(V) by rat liver cytosolic and microsomal fractions: is DT-diaphorase involved?
    Aiyar J; De Flora S; Wetterhahn KE
    Carcinogenesis; 1992 Jul; 13(7):1159-66. PubMed ID: 1379126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of superoxide dismutase and catalase during reduction of adrenochrome by DT-diaphorase and NADPH-cytochrome P450 reductase.
    Baez S; Segura-Aguilar J
    Biochem Mol Med; 1995 Oct; 56(1):37-44. PubMed ID: 8593536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane.
    Navarro F; Navas P; Burgess JR; Bello RI; De Cabo R; Arroyo A; Villalba JM
    FASEB J; 1998 Dec; 12(15):1665-73. PubMed ID: 9837856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mobilization of ferritin iron by liver cytosol. A comparison of xanthine and NADH as reducing substrates.
    Topham R; Goger M; Pearce K; Schultz P
    Biochem J; 1989 Jul; 261(1):137-43. PubMed ID: 2775199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of tocopheryl quinone in mitochondrial membranes and interference with ubiquinone-mediated electron transfer.
    Gregor W; Staniek K; Nohl H; Gille L
    Biochem Pharmacol; 2006 May; 71(11):1589-601. PubMed ID: 16569397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.