These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 8882807)
21. Bacterial strains isolated from river water having the ability to split alcohol ethoxylates by central fission. Budnik I; Zembrzuska J; Lukaszewski Z Environ Sci Pollut Res Int; 2016 Jul; 23(14):14231-9. PubMed ID: 27053052 [TBL] [Abstract][Full Text] [Related]
22. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH. Ríos F; Lechuga M; Fernández-Serrano M; Fernández-Arteaga A Chemosphere; 2017 Mar; 171():324-331. PubMed ID: 28027477 [TBL] [Abstract][Full Text] [Related]
23. Effect of ethoxylate number and alkyl chain length on the pathway and kinetics of linear alcohol ethoxylate biodegradation in activated sludge. Itrich NR; Federle TW Environ Toxicol Chem; 2004 Dec; 23(12):2790-8. PubMed ID: 15648751 [TBL] [Abstract][Full Text] [Related]
24. Complete oxidation of linear alkylbenzene sulfonate by bacterial communities selected from coastal seawater. Sigoillot JC; Nguyen MH Appl Environ Microbiol; 1992 Apr; 58(4):1308-12. PubMed ID: 1599249 [TBL] [Abstract][Full Text] [Related]
25. Sources, transport and reactivity of anionic and non-ionic surfactants in several aquatic ecosystems in SW Spain: a comparative study. Lara-Martín PA; Gómez-Parra A; González-Mazo E Environ Pollut; 2008 Nov; 156(1):36-45. PubMed ID: 18295945 [TBL] [Abstract][Full Text] [Related]
26. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Nguyen MH; Sigoillot JC Biodegradation; 1996-1997; 7(5):369-75. PubMed ID: 9144968 [TBL] [Abstract][Full Text] [Related]
27. Influence of microbial activity on polar xenobiotic degradation in activated sludge systems. Majewsky M; Gallé T; Zwank L; Fischer K Water Sci Technol; 2010; 62(3):701-7. PubMed ID: 20706018 [TBL] [Abstract][Full Text] [Related]
28. Biodegradation of nonylphenoxy carboxylates mixtures in two microcosms. Zhang J; Yang M; Qiao Y; Zhang Y; Chen M Sci Total Environ; 2007 Dec; 388(1-3):392-7. PubMed ID: 17884140 [TBL] [Abstract][Full Text] [Related]
29. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112 [TBL] [Abstract][Full Text] [Related]
30. Biodegradability and aquatic toxicity of new cleavable betainate cationic oligomeric surfactants. Garcia MT; Ribosa I; Kowalczyk I; Pakiet M; Brycki B J Hazard Mater; 2019 Jun; 371():108-114. PubMed ID: 30849564 [TBL] [Abstract][Full Text] [Related]
31. Collaboration of bacterial consortia for biodegradation of high concentration phenol and potential application of machine learning. Bing W; Li X; Zhao Y; Wang Y; Zhang J; Zhang J; Liang J Chem Biol Interact; 2024 Aug; 399():111153. PubMed ID: 39029858 [TBL] [Abstract][Full Text] [Related]
32. Fate and effects of amphoteric surfactants in the aquatic environment. Garcia MT; Campos E; Marsal A; Ribosa I Environ Int; 2008 Oct; 34(7):1001-5. PubMed ID: 18456334 [TBL] [Abstract][Full Text] [Related]
33. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment. González S; Petrovic M; Barceló D Chemosphere; 2007 Feb; 67(2):335-43. PubMed ID: 17123581 [TBL] [Abstract][Full Text] [Related]
34. [Study of microbial degradation of nonionic surface-active agents in designing technologies for purifying waste water]. Panchenko LV; Turkovskaia OV Prikl Biokhim Mikrobiol; 2000; 36(2):189-94. PubMed ID: 10780007 [TBL] [Abstract][Full Text] [Related]
35. Fate of surfactants in membrane bioreactors and conventional activated sludge plants. Gori R; Cammilli L; Petrovic M; Gonzalez S; Barcelò D; Lubello C; Malpei F Environ Sci Technol; 2010 Nov; 44(21):8223-9. PubMed ID: 20886831 [TBL] [Abstract][Full Text] [Related]
36. Read-across of ready biodegradability based on the substrate specificity of N-alkyl polypropylene polyamine-degrading microorganisms. Geerts R; van Ginkel CG; Plugge CM SAR QSAR Environ Res; 2017 Apr; 28(4):311-323. PubMed ID: 28480742 [TBL] [Abstract][Full Text] [Related]
37. Degradation of nonylphenolic surfactants in activated sludge batch tests. Langford KH; Scrimshaw MD; Birkett JW; Lester JN Water Res; 2005 Mar; 39(5):870-6. PubMed ID: 15743633 [TBL] [Abstract][Full Text] [Related]
38. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition. McAdam EJ; Bagnall JP; Soares A; Koh YK; Chiu TY; Scrimshaw MD; Lester JN; Cartmell E Environ Sci Technol; 2011 Jan; 45(1):248-54. PubMed ID: 21128606 [TBL] [Abstract][Full Text] [Related]
39. Bacterial degradation of detergent compounds. Goodnow RA; Harrison AP Appl Microbiol; 1972 Oct; 24(4):555-60. PubMed ID: 4343864 [TBL] [Abstract][Full Text] [Related]
40. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Maki H; Masuda N; Fujiwara Y; Ike M; Fujita M Appl Environ Microbiol; 1994 Jul; 60(7):2265-71. PubMed ID: 8074508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]