BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 8882865)

  • 1. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating.
    Ma J; González A; Chen R
    J Gen Physiol; 1996 Sep; 108(3):221-32. PubMed ID: 8882865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged depolarization promotes fast gating kinetics of L-type Ca2+ channels in mouse skeletal myotubes.
    O'Connell KM; Dirksen RT
    J Physiol; 2000 Dec; 529 Pt 3(Pt 3):647-59. PubMed ID: 11118495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling.
    Dirksen RT; Beam KG
    J Gen Physiol; 1999 Sep; 114(3):393-403. PubMed ID: 10469729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desensitization of the skeletal muscle ryanodine receptor: evidence for heterogeneity of calcium release channels.
    Ma J
    Biophys J; 1995 Mar; 68(3):893-9. PubMed ID: 7756554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast gating kinetics of the slow Ca2+ current in cut skeletal muscle fibres of the frog.
    Feldmeyer D; Melzer W; Pohl B; Zöllner P
    J Physiol; 1990 Jun; 425():347-67. PubMed ID: 2170630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of perchlorate on the molecules of excitation-contraction coupling of skeletal and cardiac muscle.
    Ma J; Anderson K; Shirokov R; Levis R; González A; Karhanek M; Hosey MM; Meissner G; Ríos E
    J Gen Physiol; 1993 Sep; 102(3):423-48. PubMed ID: 8245818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 3. Effects of phosphorylation by protein kinase C.
    Ma J; Gutiérrez LM; Hosey MM; Ríos E
    Biophys J; 1992 Sep; 63(3):639-47. PubMed ID: 1330033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dihydropyridine-sensitive skeletal muscle Ca channels in polarized planar bilayers. 1. Kinetics and voltage dependence of gating.
    Ma J; Mundiña-Weilenmann C; Hosey MM; Ríos E
    Biophys J; 1991 Oct; 60(4):890-901. PubMed ID: 1660319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium current reactivation after flash photolysis of nifedipine in skeletal muscle fibres of the frog.
    Feldmeyer D; Zöllner P; Pohl B; Melzer W
    J Physiol; 1995 Aug; 487(1):51-6. PubMed ID: 7473258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of dihydropyridine receptors in terminating Ca2+ release in rat skeletal myotubes.
    Suda N
    J Physiol; 1995 Jul; 486 ( Pt 1)(Pt 1):105-12. PubMed ID: 7562626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A dihydropyridine-sensitive voltage-dependent calcium channel in the sarcolemmal membrane of crustacean muscle.
    Erxleben C; Rathmayer W
    J Gen Physiol; 1997 Mar; 109(3):313-26. PubMed ID: 9089439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local control model of excitation-contraction coupling in skeletal muscle.
    Stern MD; Pizarro G; Ríos E
    J Gen Physiol; 1997 Oct; 110(4):415-40. PubMed ID: 9379173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the potassium channel from frog skeletal muscle sarcoplasmic reticulum membrane.
    Wang J; Best PM
    J Physiol; 1994 Jun; 477(Pt 2):279-90. PubMed ID: 7932219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ryanodine on cardiac calcium current and calcium channel gating current.
    Lacampagne A; Caputo C; Argibay J
    Biophys J; 1996 Jan; 70(1):370-5. PubMed ID: 8770213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoform-specific inhibition of L-type calcium channels by dihydropyridines is independent of isoform-specific gating properties.
    Hu H; Marban E
    Mol Pharmacol; 1998 May; 53(5):902-7. PubMed ID: 9584217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single channel recordings of Nt- and L-type Ca2+ currents in rat neurohypophysial terminals.
    Wang X; Treistman SN; Lemos JR
    J Neurophysiol; 1993 Oct; 70(4):1617-28. PubMed ID: 8283218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge movement and SR calcium release in frog skeletal muscle can be related by a Hodgkin-Huxley model with four gating particles.
    Simon BJ; Hill DA
    Biophys J; 1992 May; 61(5):1109-16. PubMed ID: 1318090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A repetitive mode of activation of discrete Ca2+ release events (Ca2+ sparks) in frog skeletal muscle fibres.
    Klein MG; Lacampagne A; Schneider MF
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):391-411. PubMed ID: 10050007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent inactivation of T-tubular skeletal calcium channels in planar lipid bilayers.
    Mejía-Alvarez R; Fill M; Stefani E
    J Gen Physiol; 1991 Feb; 97(2):393-412. PubMed ID: 1849962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratio of dihydropyridine to ryanodine receptors in mammalian and frog twitch muscles in relation to the mechanical hypothesis of excitation-contraction coupling.
    Margreth A; Damiani E; Tobaldin G
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1303-11. PubMed ID: 8280147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.