BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8882998)

  • 1. Adaptive strategies of respiratory muscles in response to endurance exercise.
    Powers SK; Criswell D
    Med Sci Sports Exerc; 1996 Sep; 28(9):1115-22. PubMed ID: 8882998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise training-induced changes in respiratory muscles.
    Powers SK; Coombes J; Demirel H
    Sports Med; 1997 Aug; 24(2):120-31. PubMed ID: 9291552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endurance-training-induced cellular adaptations in respiratory muscles.
    Powers SK; Lawler J; Criswell D; Dodd S; Grinton S; Bagby G; Silverman H
    J Appl Physiol (1985); 1990 May; 68(5):2114-8. PubMed ID: 2361913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of upper airway muscles to chronic endurance exercise.
    Vincent HK; Shanely RA; Stewart DJ; Demirel HA; Hamilton KL; Ray AD; Michlin C; Farkas GA; Powers SK
    Am J Respir Crit Care Med; 2002 Aug; 166(3):287-93. PubMed ID: 12153959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training.
    Verges S; Lenherr O; Haner AC; Schulz C; Spengler CM
    Am J Physiol Regul Integr Comp Physiol; 2007 Mar; 292(3):R1246-53. PubMed ID: 17068160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional training-induced alterations in diaphragmatic oxidative and antioxidant enzymes.
    Powers SK; Criswell D; Lawler J; Martin D; Ji LL; Herb RA; Dudley G
    Respir Physiol; 1994 Feb; 95(2):227-37. PubMed ID: 8191043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle endurance and mitochondrial function after chronic normobaric hypoxia: contrast of respiratory and limb muscles.
    Gamboa JL; Andrade FH
    Pflugers Arch; 2012 Feb; 463(2):327-38. PubMed ID: 22113781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endurance training-induced increases in expiratory muscle oxidative capacity.
    Grinton S; Powers SK; Lawler J; Criswell D; Dodd S; Edwards W
    Med Sci Sports Exerc; 1992 May; 24(5):551-5. PubMed ID: 1533265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial electron transport chain function is enhanced in inspiratory muscles of patients with chronic obstructive pulmonary disease.
    Ribera F; N'Guessan B; Zoll J; Fortin D; Serrurier B; Mettauer B; Bigard X; Ventura-Clapier R; Lampert E
    Am J Respir Crit Care Med; 2003 Mar; 167(6):873-9. PubMed ID: 12493645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance.
    Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M
    FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise.
    Segizbaeva MO; Timofeev NN; Donina ZhA; Kur'yanovich EN; Aleksandrova NP
    Adv Exp Med Biol; 2015; 840():35-43. PubMed ID: 25248344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diaphragmatic fiber type specific adaptation to endurance exercise.
    Powers SK; Criswell D; Lieu FK; Dodd S; Silverman H
    Respir Physiol; 1992 Aug; 89(2):195-207. PubMed ID: 1439301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moderate-intensity endurance training improves endothelial glycocalyx layer integrity in healthy young men.
    Majerczak J; Grandys M; Duda K; Zakrzewska A; Balcerczyk A; Kolodziejski L; Szymoniak-Chochol D; Smolenski RT; Bartosz G; Chlopicki S; Zoladz JA
    Exp Physiol; 2017 Jan; 102(1):70-85. PubMed ID: 27748983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive responses of hypertrophying skeletal muscle to endurance training.
    Stone J; Brannon T; Haddad F; Qin A; Baldwin KM
    J Appl Physiol (1985); 1996 Aug; 81(2):665-72. PubMed ID: 8872632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action and interaction of respiratory muscles in dogs.
    Decramer M
    Verh K Acad Geneeskd Belg; 1990; 52(2):141-201. PubMed ID: 2203213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise-induced changes in diaphragmatic bioenergetic and antioxidant capacity.
    Powers SK; Shanely RA
    Exerc Sport Sci Rev; 2002 Apr; 30(2):69-74. PubMed ID: 11991540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of endurance exercise on respiratory muscle performance.
    Perret C; Spengler CM; Egger G; Boutellier U
    Med Sci Sports Exerc; 2000 Dec; 32(12):2052-8. PubMed ID: 11128851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism.
    Booth FW; Ruegsegger GN; Toedebusch RG; Yan Z
    Prog Mol Biol Transl Sci; 2015; 135():129-51. PubMed ID: 26477913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.