These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8883117)

  • 1. Ultrasound velocity and broadband attenuation over a wide range of bone mineral density.
    Han S; Rho J; Medige J; Ziv I
    Osteoporos Int; 1996; 6(4):291-6. PubMed ID: 8883117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonlinear transition period of broadband ultrasound attenuation as bone density varies.
    Serpe L; Rho JY
    J Biomech; 1996 Jul; 29(7):963-6. PubMed ID: 8809627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently.
    Töyräs J; Nieminen MT; Kröger H; Jurvelin JS
    Bone; 2002 Oct; 31(4):503-7. PubMed ID: 12398947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of broadband ultrasound attenuation on the elastic anisotropy of trabecular bone.
    Han SM; Rho JY
    Proc Inst Mech Eng H; 1998; 212(3):223-7. PubMed ID: 9695641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband ultrasound attenuation value dependence on bone width in vitro.
    Serpe LJ; Rho JY
    Phys Med Biol; 1996 Jan; 41(1):197-202. PubMed ID: 8685255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bovine bone constituents on broadband ultrasound attenuation measurements.
    Duquette J; Honeyman T; Hoffman A; Ahmadi S; Baran D
    Bone; 1997 Sep; 21(3):289-94. PubMed ID: 9276095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study.
    Glüer CC; Wu CY; Genant HK
    Osteoporos Int; 1993 Jul; 3(4):185-91. PubMed ID: 8338973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the velocity and attenuation of ultrasound in bone on the mineral content.
    Tavakoli MB; Evans JA
    Phys Med Biol; 1991 Nov; 36(11):1529-37. PubMed ID: 1754623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations among bone mineral density, broadband ultrasound attenuation, mechanical indentation testing, and bone orientation in bovine femoral neck samples.
    Duquette J; Lin J; Hoffman A; Houde J; Ahmadi S; Baran D
    Calcif Tissue Int; 1997 Feb; 60(2):181-6. PubMed ID: 9056168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Peripheral quantitative Computed Tomography (pQCT), broad ultrasound attenuation (BUA) and speed of ultrasound (SOS) in a normal population (426 females) aged 8 to 20 years].
    Bagni B; Corazzari T; Saccani-Jotti G; Casolo A; Franceschetto A; Romagnoli R
    Radiol Med; 2001 Oct; 102(4):217-21. PubMed ID: 11740447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-megahertz ultrasonic properties of bovine cancellous bone.
    Hoffmeister BK; Whitten SA; Rho JY
    Bone; 2000 Jun; 26(6):635-42. PubMed ID: 10831936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone properties as estimated by mineral density, ultrasound attenuation, and velocity.
    Töyräs J; Kröger H; Jurvelin JS
    Bone; 1999 Dec; 25(6):725-31. PubMed ID: 10593418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vitro measurement of ultrasound in cancellous bone.
    Langton CM; Hodgskinson R
    Stud Health Technol Inform; 1997; 40():175-99. PubMed ID: 10168878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the biomechanical properties of cancellous bone using ultrasound velocity and bone mineral density--an in vitro study.
    Drozdzowska B; Pluskiewicz W; Przedlacki J
    Med Sci Monit; 2002 Jan; 8(1):MT15-20. PubMed ID: 11782683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound characterization of bone demineralization.
    Wu C; Glüer C; Lu Y; Fuerst T; Hans D; Genant HK
    Calcif Tissue Int; 1998 Feb; 62(2):133-9. PubMed ID: 9437046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound velocity and attenuation at different skeletal sites compared with bone mineral density measured using dual energy X-ray absorptiometry.
    Cunningham JL; Fordham JN; Hewitt TA; Speed CA
    Br J Radiol; 1996 Jan; 69(817):25-32. PubMed ID: 8785618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does quantitative ultrasound of bone reflect more bone mineral density than bone microarchitecture?
    Cortet B; Boutry N; Dubois P; Legroux-Gérot I; Cotten A; Marchandise X
    Calcif Tissue Int; 2004 Jan; 74(1):60-7. PubMed ID: 14517711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of titanium prosthesis, offset and size of field of view on bone mineral density measurements using quantitative computed tomography.
    Feng Z; Ziv I; Rho J; Han S; Fishkin Z
    Br J Radiol; 2000 May; 73(869):498-503. PubMed ID: 10884746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative ultrasound assessment of bone in patients with primary hyperparathyroidism.
    Minisola S; Rosso R; Scarda A; Pacitti MT; Romagnoli E; Mazzuoli G
    Calcif Tissue Int; 1995 Jun; 56(6):526-8. PubMed ID: 7648479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mandibular bone mineral density measured using dual-energy X-ray absorptiometry: relationship to hip bone mineral density and quantitative ultrasound at calcaneus and hand phalanges.
    Pluskiewicz W; Tarnawska B; Drozdzowska B
    Br J Radiol; 2000 Mar; 73(867):288-92. PubMed ID: 10817045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.