These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 8883194)
1. In situ rigidity of a new sliding rod for management of the growing spine in Duchenne muscular dystrophy. Wilke HJ; Kluger P; Naumann T; Kron T; Claes LE; Puhl W Spine (Phila Pa 1976); 1996 Sep; 21(17):1957-61. PubMed ID: 8883194 [TBL] [Abstract][Full Text] [Related]
2. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical analysis of anterior scoliosis instrumentation: differences between single and dual rod systems with and without interbody structural support. Fricka KB; Mahar AT; Newton PO Spine (Phila Pa 1976); 2002 Apr; 27(7):702-6. PubMed ID: 11923662 [TBL] [Abstract][Full Text] [Related]
4. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis. Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203 [TBL] [Abstract][Full Text] [Related]
5. Augmentation of an anterior solid rod construct with threaded cortical bone dowels. A biomechanical study. Spiegel DA; Drummond DS; Cunningham BW; Kanayama M; Haggerty CJ; McAfee PC; Dormans JP Spine (Phila Pa 1976); 1999 Nov; 24(22):2300-6; discussion 2307. PubMed ID: 10586452 [TBL] [Abstract][Full Text] [Related]
6. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support. Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209 [TBL] [Abstract][Full Text] [Related]
7. Biomechanical properties of threaded inserts for lumbar interbody spinal fusion. Tencer AF; Hampton D; Eddy S Spine (Phila Pa 1976); 1995 Nov; 20(22):2408-14. PubMed ID: 8578391 [TBL] [Abstract][Full Text] [Related]
8. A comparative biomechanical study of spinal fixation using the combination spinal rod-plate and transpedicular screw fixation system. Chang KW; Dewei Z; McAfee PC; Warden KE; Farey ID; Gurr KR J Spinal Disord; 1988; 1(4):257-66. PubMed ID: 2980253 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical comparison of lumbosacral fixation using Luque-Galveston and Colorado II sacropelvic fixation: advantage of using locked proximal fixation. Early S; Mahar A; Oka R; Newton P Spine (Phila Pa 1976); 2005 Jun; 30(12):1396-401. PubMed ID: 15959368 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical evaluation of a novel lumbosacral axial fixation device. Ledet EH; Tymeson MP; Salerno S; Carl AL; Cragg A J Biomech Eng; 2005 Nov; 127(6):929-33. PubMed ID: 16438229 [TBL] [Abstract][Full Text] [Related]
11. Biomechanical studies on two anterior thoracolumbar implants in cadaveric spines. Hitchon PW; Goel VK; Rogge T; Grosland NM; Torner J Spine (Phila Pa 1976); 1999 Feb; 24(3):213-8. PubMed ID: 10025015 [TBL] [Abstract][Full Text] [Related]
12. Anterior thoracolumbar instrumentation: stiffness and load sharing characteristics of plate and rod systems. Brodke DS; Gollogly S; Bachus KN; Alexander Mohr R; Nguyen BK Spine (Phila Pa 1976); 2003 Aug; 28(16):1794-801. PubMed ID: 12923465 [TBL] [Abstract][Full Text] [Related]
13. Anterior vertebral screw strain with and without solid interspace support. Spiegel DA; Cunningham BW; Oda I; Dormans JP; McAfee PC; Drummond DS Spine (Phila Pa 1976); 2000 Nov; 25(21):2755-61. PubMed ID: 11064520 [TBL] [Abstract][Full Text] [Related]
14. Novel dual-rod screw for thoracoscopic anterior instrumentation: biomechanical evaluation compared with single-rod and double-screw/double-rod anterior constructs. Zhang H; Sucato DJ; Pierce WA; Ross D Spine (Phila Pa 1976); 2009 Mar; 34(5):E183-8. PubMed ID: 19247158 [TBL] [Abstract][Full Text] [Related]
15. The effect of kyphosis on the mechanical strength of a long-segment posterior construct using a synthetic model. Orchowski J; Polly DW; Klemme WR; Oda I; Cunningham B Spine (Phila Pa 1976); 2000 Jul; 25(13):1644-8. PubMed ID: 10870139 [TBL] [Abstract][Full Text] [Related]
16. Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine. Shono Y; Kaneda K; Abumi K; McAfee PC; Cunningham BW Spine (Phila Pa 1976); 1998 Jul; 23(14):1550-8. PubMed ID: 9682311 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical differences between transfacet and lateral mass screw-rod constructs for multilevel posterior cervical spine stabilization. Miyanji F; Mahar A; Oka R; Newton P Spine (Phila Pa 1976); 2008 Nov; 33(23):E865-9. PubMed ID: 18978579 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical comparison of posterior cervicothoracic instrumentation techniques after one-level laminectomy and facetectomy. Eleraky M; Setzer M; Baaj AA; Papanastassiou I; Conrad BP; Vrionis FD J Neurosurg Spine; 2010 Nov; 13(5):622-9. PubMed ID: 21039154 [TBL] [Abstract][Full Text] [Related]
19. Is a gradual reduction of stiffness on top of posterior instrumentation possible with a suitable proximal implant? A biomechanical study. Lange T; Schmoelz W; Gosheger G; Eichinger M; Heinrichs CH; Boevingloh AS; Schulte TL Spine J; 2017 Aug; 17(8):1148-1155. PubMed ID: 28373080 [TBL] [Abstract][Full Text] [Related]
20. Biomechanical evaluation of a new modular rod-screw implant system for posterior instrumentation of the occipito-cervical spine: in-vitro comparison with two established implant systems. Richter M; Wilke HJ; Kluger P; Neller S; Claes L; Puhl W Eur Spine J; 2000 Oct; 9(5):417-25. PubMed ID: 11057536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]