These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 8883811)
21. Recovery from early cortical damage in rats, VIII. Earlier may be worse: behavioural dysfunction and abnormal cerebral morphogenesis following perinatal frontal cortical lesions in the rat. Kolb B; Cioe J Neuropharmacology; 2000 Mar; 39(5):756-64. PubMed ID: 10699442 [TBL] [Abstract][Full Text] [Related]
22. Differential effects of prefrontal cortex ablation in neonatal, juvenile, and young adult rats. Nonneman AJ; Corwin JV J Comp Physiol Psychol; 1981 Aug; 95(4):588-602. PubMed ID: 7053180 [TBL] [Abstract][Full Text] [Related]
23. Recovery from medial prefrontal cortex injury during adolescence: implications for age-dependent plasticity. Nemati F; Kolb B Behav Brain Res; 2012 Apr; 229(1):168-75. PubMed ID: 22261018 [TBL] [Abstract][Full Text] [Related]
24. Prefrontal cortex and hippocampus in posttraumatic functional recovery: spatial delayed alternation by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex. Mogensen J; Hjortkjaer J; Ibervang KL; Stedal K; Malá H Brain Res Bull; 2007 Jun; 73(1-3):86-95. PubMed ID: 17499641 [TBL] [Abstract][Full Text] [Related]
25. Bilateral frontal cortical contusion in rats: behavioral and anatomic consequences. Hoffman SW; Fülöp Z; Stein DG J Neurotrauma; 1994 Aug; 11(4):417-31. PubMed ID: 7837282 [TBL] [Abstract][Full Text] [Related]
26. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Sullivan RM; Gratton A Brain Res; 2002 Feb; 927(1):69-79. PubMed ID: 11814433 [TBL] [Abstract][Full Text] [Related]
27. Recovery from early cortical damage in rats. II. Effects of experience on anatomy and behavior following frontal lesions at 1 or 5 days of age. Kolb B; Elliott W Behav Brain Res; 1987 Oct; 26(1):47-56. PubMed ID: 3675834 [TBL] [Abstract][Full Text] [Related]
28. Effects of medial prefrontal cortex lesions on anxiety-like behaviour in restrained and non-restrained rats. Blanco E; Castilla-Ortega E; Miranda R; Begega A; Aguirre JA; Arias JL; Santín LJ Behav Brain Res; 2009 Aug; 201(2):338-42. PubMed ID: 19428654 [TBL] [Abstract][Full Text] [Related]
30. Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Schneider M; Koch M Neuropsychopharmacology; 2005 May; 30(5):944-57. PubMed ID: 15592349 [TBL] [Abstract][Full Text] [Related]
31. Neonatal ventral hippocampus lesions disrupt extra-dimensional shift and alter dendritic spine density in the medial prefrontal cortex of juvenile rats. Marquis JP; Goulet S; Doré FY Neurobiol Learn Mem; 2008 Sep; 90(2):339-46. PubMed ID: 18490183 [TBL] [Abstract][Full Text] [Related]
32. Prefrontal cortex and hippocampus in behavioural flexibility and posttraumatic functional recovery: reversal learning and set-shifting in rats. Malá H; Andersen LG; Christensen RF; Felbinger A; Hagstrøm J; Meder D; Pearce H; Mogensen J Brain Res Bull; 2015 Jul; 116():34-44. PubMed ID: 26033702 [TBL] [Abstract][Full Text] [Related]
33. Erythropoietin improves spatial delayed alternation in a T-maze in rats subjected to ablation of the prefrontal cortex. Mogensen J; Boyd MH; Nielsen MD; Kristensen RS; Malá H Brain Res Bull; 2008 Sep; 77(1):1-7. PubMed ID: 18639740 [TBL] [Abstract][Full Text] [Related]
34. Lesions of the medial prefrontal cortex enhance the early phase of psychogenic fever to unexpected sucrose concentration reductions, promote recovery from negative contrast and enhance spontaneous recovery of sucrose-entrained anticipatory activity. Pecoraro N; de Jong H; Ginsberg AB; Dallman MF Neuroscience; 2008 Jun; 153(4):901-17. PubMed ID: 18455879 [TBL] [Abstract][Full Text] [Related]
35. Spatial delayed alternation of rats in a T-maze: effects of neurotoxic lesions of the medial prefrontal cortex and of T-maze rotations. Sánchez-Santed F; de Bruin JP; Heinsbroek RP; Verwer RW Behav Brain Res; 1997 Mar; 84(1-2):73-9. PubMed ID: 9079774 [TBL] [Abstract][Full Text] [Related]
37. Embryonic pretreatment with bromodeoxyuridine blocks regeneration and functional recovery from perinatal medial frontal lesions in rats. Kolb B; Pedersen B; Gibb R Dev Neurosci; 2012; 34(2-3):228-39. PubMed ID: 22627036 [TBL] [Abstract][Full Text] [Related]
38. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Ghods-Sharifi S; Haluk DM; Floresco SB Neurobiol Learn Mem; 2008 May; 89(4):567-73. PubMed ID: 18054257 [TBL] [Abstract][Full Text] [Related]
39. Neonatal medial prefrontal cortex lesion enhances the sensitivity of the mesoaccumbal dopamine system. Bennay M; Gernert M; Schwabe K; Enkel T; Koch M Eur J Neurosci; 2004 Jun; 19(12):3277-90. PubMed ID: 15217384 [TBL] [Abstract][Full Text] [Related]
40. Is there an optimal age for recovery from motor cortex lesions? I. Behavioral and anatomical sequelae of bilateral motor cortex lesions in rats on postnatal days 1, 10, and in adulthood. Kolb B; Cioe J; Whishaw IQ Brain Res; 2000 Nov; 882(1-2):62-74. PubMed ID: 11056185 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]