These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 8883858)

  • 21. Neural responses in cat visual cortex reflect state changes in correlated activity.
    van der Togt C; Spekreijse H; Supèr H
    Eur J Neurosci; 2005 Jul; 22(2):465-75. PubMed ID: 16045499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The response of cat visual cortex to flicker stimuli of variable frequency.
    Rager G; Singer W
    Eur J Neurosci; 1998 May; 10(5):1856-77. PubMed ID: 9751156
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stimulus dependent intercolumnar synchronization of single unit responses in cat area 17.
    Freiwald WA; Kreiter AK; Singer W
    Neuroreport; 1995 Nov; 6(17):2348-52. PubMed ID: 8747151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between image structure and gamma oscillations and synchronization in visual cortex of cats.
    Molotchnikoff S; Shumikhina S
    Eur J Neurosci; 2000 Apr; 12(4):1440-52. PubMed ID: 10762372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visually evoked oscillations of membrane potential in cells of cat visual cortex.
    Jagadeesh B; Gray CM; Ferster D
    Science; 1992 Jul; 257(5069):552-4. PubMed ID: 1636094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings.
    Shou T; Li X; Zhou Y; Hu B
    Vis Neurosci; 1996; 13(4):605-13. PubMed ID: 8870219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronous high-frequency oscillations in cat area 18.
    Brosch M; Bauer R; Eckhorn R
    Eur J Neurosci; 1995 Jan; 7(1):86-95. PubMed ID: 7711940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are neurons in cat posteromedial lateral suprasylvian visual cortex orientation sensitive? Tests with bars and gratings.
    Danilov Y; Moore RJ; King VR; Spear PD
    Vis Neurosci; 1995; 12(1):141-51. PubMed ID: 7718495
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational subunits of visual cortical neurons revealed by artificial neural networks.
    Lau B; Stanley GB; Dan Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8974-9. PubMed ID: 12060706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of low and high frequency inputs on spike timing in visual cortical neurons.
    Nowak LG; Sanchez-Vives MV; McCormick DA
    Cereb Cortex; 1997 Sep; 7(6):487-501. PubMed ID: 9276174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of a luminance-modulated background on the grating-evoked cortical potential in the cat.
    Baro JA; Lehmkuhle S
    Vis Neurosci; 1989 Dec; 3(6):563-72. PubMed ID: 2487122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linear and nonlinear properties of simple cells of the striate cortex of the cat: two types of nonlinearity.
    Glezer VD; Gauzelman VE
    Exp Brain Res; 1997 Nov; 117(2):281-91. PubMed ID: 9419074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On oscillating neuronal responses in the visual cortex of the monkey.
    Young MP; Tanaka K; Yamane S
    J Neurophysiol; 1992 Jun; 67(6):1464-74. PubMed ID: 1629758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials.
    Todorov MI; Kékesi KA; Borhegyi Z; Galambos R; Juhász G; Hudetz AG
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27702884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of relevant visual features from random stimuli for cortical complex cells.
    Touryan J; Lau B; Dan Y
    J Neurosci; 2002 Dec; 22(24):10811-8. PubMed ID: 12486174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterns in the discharge of simple and complex visual cortical cells.
    Cattaneo A; Maffei L; Morrone C
    Proc R Soc Lond B Biol Sci; 1981 Jul; 212(1188):279-97. PubMed ID: 6115393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex.
    Gizzi MS; Katz E; Schumer RA; Movshon JA
    J Neurophysiol; 1990 Jun; 63(6):1529-43. PubMed ID: 2358891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus-dependent neuronal oscillations and local synchronization in striate cortex of the alert cat.
    Gray CM; Viana Di Prisco G
    J Neurosci; 1997 May; 17(9):3239-53. PubMed ID: 9096157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.