These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8883909)
1. Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington's disease. Cicchetti F; Gould PV; Parent A Brain Res; 1996 Aug; 730(1-2):232-7. PubMed ID: 8883909 [TBL] [Abstract][Full Text] [Related]
2. Striatal interneurons in Huntington's disease: selective increase in the density of calretinin-immunoreactive medium-sized neurons. Cicchetti F; Parent A Mov Disord; 1996 Nov; 11(6):619-26. PubMed ID: 8914086 [TBL] [Abstract][Full Text] [Related]
3. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease. Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842 [TBL] [Abstract][Full Text] [Related]
4. Chemical phenotype of calretinin interneurons in the human striatum. Cicchetti F; Beach TG; Parent A Synapse; 1998 Nov; 30(3):284-97. PubMed ID: 9776132 [TBL] [Abstract][Full Text] [Related]
5. Chemical anatomy of striatal interneurons in normal individuals and in patients with Huntington's disease. Cicchetti F; Prensa L; Wu Y; Parent A Brain Res Brain Res Rev; 2000 Nov; 34(1-2):80-101. PubMed ID: 11086188 [TBL] [Abstract][Full Text] [Related]
6. The fate of the large striatal interneurons expressing calretinin in Huntington's disease. Massouh M; Wallman MJ; Pourcher E; Parent A Neurosci Res; 2008 Dec; 62(4):216-24. PubMed ID: 18801393 [TBL] [Abstract][Full Text] [Related]
7. The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. Petryszyn S; Parent A; Parent M J Neural Transm (Vienna); 2018 Mar; 125(3):279-290. PubMed ID: 28168621 [TBL] [Abstract][Full Text] [Related]
8. Differential expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits by calretinin-immunoreactive neurons in the human striatum. Cicchetti F; Vinet J; Beach TG; Parent A Neuroscience; 1999; 93(1):89-97. PubMed ID: 10430473 [TBL] [Abstract][Full Text] [Related]
9. Substance P and substance P receptor histochemistry in human neurodegenerative diseases. Kowall NW; Quigley BJ; Krause JE; Lu F; Kosofsky BE; Ferrante RJ Regul Pept; 1993 Jul; 46(1-2):174-85. PubMed ID: 7692486 [TBL] [Abstract][Full Text] [Related]
10. Striatal cells containing the Ca(2+)-binding protein calretinin (protein 10) in ischemia-induced neuronal injury. Yamada K; Goto S; Oyama T; Yoshikawa M; Nagahiro S; Ushio Y Acta Neuropathol; 1995; 89(2):172-7. PubMed ID: 7732789 [TBL] [Abstract][Full Text] [Related]
11. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157 [TBL] [Abstract][Full Text] [Related]
12. Calretinin is largely localized to a unique population of striatal interneurons in rats. Figueredo-Cardenas G; Medina L; Reiner A Brain Res; 1996 Feb; 709(1):145-50. PubMed ID: 8869567 [TBL] [Abstract][Full Text] [Related]
13. The fate of striatal dopaminergic neurons in Parkinson's disease and Huntington's chorea. Huot P; Lévesque M; Parent A Brain; 2007 Jan; 130(Pt 1):222-32. PubMed ID: 17142832 [TBL] [Abstract][Full Text] [Related]
14. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Beal MF; Brouillet E; Jenkins BG; Ferrante RJ; Kowall NW; Miller JM; Storey E; Srivastava R; Rosen BR; Hyman BT J Neurosci; 1993 Oct; 13(10):4181-92. PubMed ID: 7692009 [TBL] [Abstract][Full Text] [Related]
15. Cell type-specific localization of optineurin in the striatal neurons of mice: implications for neuronal vulnerability in Huntington's disease. Okita S; Morigaki R; Koizumi H; Kaji R; Nagahiro S; Goto S Neuroscience; 2012 Jan; 202():363-70. PubMed ID: 22155493 [TBL] [Abstract][Full Text] [Related]
16. Intranuclear inclusions in subtypes of striatal neurons in Huntington's disease transgenic mice. Kosinski CM; Cha JH; Young AB; Mangiarini L; Bates G; Schiefer J; Schwarz M Neuroreport; 1999 Dec; 10(18):3891-6. PubMed ID: 10716229 [TBL] [Abstract][Full Text] [Related]
17. Calretinin-immunoreactive neurons in the human striatum. Parent A; Cicchetti F; Beach TG Brain Res; 1995 Mar; 674(2):347-51. PubMed ID: 7796115 [TBL] [Abstract][Full Text] [Related]
18. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Liang ZQ; Wang XX; Wang Y; Chuang DM; DiFiglia M; Chase TN; Qin ZH Neurobiol Dis; 2005 Nov; 20(2):562-73. PubMed ID: 15922606 [TBL] [Abstract][Full Text] [Related]
19. Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease. Kiyama H; Seto-Ohshima A; Emson PC Brain Res; 1990 Aug; 525(2):209-14. PubMed ID: 2147568 [TBL] [Abstract][Full Text] [Related]
20. Synaptophysin expression in the striatum in Huntington's disease. Goto S; Hirano A Acta Neuropathol; 1990; 80(1):88-91. PubMed ID: 2141751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]