BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8883962)

  • 1. A conserved disulfide loop facilitates conformational maturation in the subunits of the acetylcholine receptor.
    Walcott EC; Sumikawa K
    Brain Res Mol Brain Res; 1996 Sep; 41(1-2):289-300. PubMed ID: 8883962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-glycosylation at the conserved sites ensures the expression of properly folded functional ACh receptors.
    Gehle VM; Walcott EC; Nishizaki T; Sumikawa K
    Brain Res Mol Brain Res; 1997 May; 45(2):219-29. PubMed ID: 9149096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of mutant subunits of the nicotinic acetylcholine receptor lacking the conserved disulfide loop structure.
    Sumikawa K; Gehle VM
    J Biol Chem; 1992 Mar; 267(9):6286-90. PubMed ID: 1556136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of Torpedo acetylcholine receptors in Xenopus oocytes.
    Saedi MS; Conroy WG; Lindstrom J
    J Cell Biol; 1991 Mar; 112(5):1007-15. PubMed ID: 1999453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the cystine loop in acetylcholine receptor assembly.
    Green WN; Wanamaker CP
    J Biol Chem; 1997 Aug; 272(33):20945-53. PubMed ID: 9252423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xenopus muscle acetylcholine receptor alpha subunits bind ligands with different affinities.
    Wang YD; Claudio T
    J Biol Chem; 1993 Sep; 268(25):18782-93. PubMed ID: 8395518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional acetylcholine receptors expressed in Xenopus oocytes after injection of Torpedo beta, gamma, and delta subunit RNAs are a consequence of endogenous oocyte gene expression.
    Buller AL; White MM
    Mol Pharmacol; 1990 Mar; 37(3):423-8. PubMed ID: 1690347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of the conserved N-glycosylation site on the nicotinic acetylcholine receptor subunits.
    Gehle VM; Sumikawa K
    Brain Res Mol Brain Res; 1991 Aug; 11(1):17-25. PubMed ID: 1662742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of a cholinergic binding site by means of synthetic peptides, monoclonal antibodies, and alpha-bungarotoxin.
    Conti-Tronconi BM; Tang F; Diethelm BM; Spencer SR; Reinhardt-Maelicke S; Maelicke A
    Biochemistry; 1990 Jul; 29(26):6221-30. PubMed ID: 2207067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure.
    Santiago J; Guzmán GR; Torruellas K; Rojas LV; Lasalde-Dominicci JA
    Biochemistry; 2004 Aug; 43(31):10064-70. PubMed ID: 15287734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rearrangement of nicotinic receptor alpha subunits during formation of the ligand binding sites.
    Mitra M; Wanamaker CP; Green WN
    J Neurosci; 2001 May; 21(9):3000-8. PubMed ID: 11312284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit requirements for Torpedo AChR channel expression: a specific role for the delta-subunit in voltage-dependent gating.
    Golino MD; Hamill OP
    J Membr Biol; 1992 Sep; 129(3):297-309. PubMed ID: 1433281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric contribution of the conserved disulfide loop to subunit oligomerization and assembly of the nicotinic acetylcholine receptor.
    Fu DX; Sine SM
    J Biol Chem; 1996 Dec; 271(49):31479-84. PubMed ID: 8940161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse-Torpedo chimeric alpha-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence.
    Butler DH; Lasalde JA; Butler JK; Tamamizu S; Zimmerman G; McNamee MG
    Cell Mol Neurobiol; 1997 Feb; 17(1):13-33. PubMed ID: 9118205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes.
    Buller AL; White MM
    J Membr Biol; 1990 May; 115(2):179-89. PubMed ID: 2355395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of phosphorylation in desensitization of acetylcholine receptors expressed in Xenopus oocytes.
    Hoffman PW; Ravindran A; Huganir RL
    J Neurosci; 1994 Jul; 14(7):4185-95. PubMed ID: 8027770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal antibodies raised against human acetylcholine receptor bind to all five subunits of the fetal isoform.
    Jacobson L; Beeson D; Tzartos S; Vincent A
    J Neuroimmunol; 1999 Aug; 98(2):112-20. PubMed ID: 10430044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substitution of Torpedo acetylcholine receptor alpha 1-subunit residues with snake alpha 1- and rat nerve alpha 3-subunit residues in recombinant fusion proteins: effect on alpha-bungarotoxin binding.
    Chaturvedi V; Donnelly-Roberts DL; Lentz TL
    Biochemistry; 1992 Feb; 31(5):1370-5. PubMed ID: 1736994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitope mapping of monoclonal antibodies to Torpedo acetylcholine receptor gamma subunits, which specifically recognize the epsilon subunit of mammalian muscle acetylcholine receptor.
    Nelson S; Shelton GD; Lei S; Lindstrom JM; Conti-Tronconi BM
    J Neuroimmunol; 1992 Jan; 36(1):13-27. PubMed ID: 1370956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibroblasts transfected with Torpedo acetylcholine receptor beta-, gamma-, and delta-subunit cDNAs express functional receptors when infected with a retroviral alpha recombinant.
    Claudio T; Paulson HL; Green WN; Ross AF; Hartman DS; Hayden D
    J Cell Biol; 1989 Jun; 108(6):2277-90. PubMed ID: 2472403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.