BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8884486)

  • 1. On improving the accuracy of instrumented spatial linkage system.
    Liu W; Panjabi MM
    J Biomech; 1996 Oct; 29(10):1383-5. PubMed ID: 8884486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach.
    Sholukha V; Salvia P; Hilal I; Feipel V; Rooze M; Jan SV
    Med Eng Phys; 2004 Apr; 26(3):251-60. PubMed ID: 14984847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2014 Jan; 136(1):011003. PubMed ID: 24064860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6R instrumented spatial linkages for anatomical joint motion measurement--Part 2: Calibration.
    Kirstukas SJ; Lewis JL; Erdman AG
    J Biomech Eng; 1992 Feb; 114(1):101-10. PubMed ID: 1491572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An instrumented spatial linkage for measuring knee joint kinematics.
    Rosvold JM; Atarod M; Frank CB; Shrive NG
    Knee; 2016 Jan; 23(1):43-8. PubMed ID: 26471425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and demonstration of a new instrumented spatial linkage for use in a dynamic environment: application to measurement of ankle rotations during snowboarding.
    Nordquist J; Hull ML
    J Biomech Eng; 2007 Apr; 129(2):231-9. PubMed ID: 17408328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-cost instrumented spatial linkage accurately determines ASIS position during cycle ergometry.
    Martin JC; Elmer SJ; Horscroft RD; Brown NA; Schultz BB
    J Appl Biomech; 2007 Aug; 23(3):224-9. PubMed ID: 18089920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of angular displacements using Hall effect transducers.
    Weinhoffer SL; Barnes SZ; Berme N
    J Biomech; 1993; 26(4-5):609-12. PubMed ID: 8478362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A linear displacement transducer by means of photo-potentiometer (author's transl)].
    Hatakeyama I; Tanakadate A; Okubo K
    Iyodenshi To Seitai Kogaku; 1980 Jun; 18(3):222-3. PubMed ID: 7206321
    [No Abstract]   [Full Text] [Related]  

  • 11. Design and evaluation of a new general-purpose device for calibrating instrumented spatial linkages.
    Nordquist JA; Hull ML
    J Biomech Eng; 2009 Mar; 131(3):034505. PubMed ID: 19154076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compact high-sensitivity potentiometer for detection of low ion concentrations in liquids.
    Balevicius Z; Lescinskas R; Celiesiute R; Stirke A; Balevicius S; Kersulis S; Bleizgys V; Maciuleviciene R; Ramanavicius A; Zurauskiene N
    Rev Sci Instrum; 2018 Apr; 89(4):044704. PubMed ID: 29716345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A liquid potentiometer for use as a heart movement transducer.
    Rogers AF
    J Physiol; 1967 Jul; 191(1):17P-18P. PubMed ID: 6050615
    [No Abstract]   [Full Text] [Related]  

  • 14. 6R instrumented spatial linkages for anatomical joint motion measurement--Part 1: Design.
    Kirstukas SJ; Lewis JL; Erdman AG
    J Biomech Eng; 1992 Feb; 114(1):92-100. PubMed ID: 1491592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a calibration technique for 6-DOF instrumented spatial linkages.
    Gatti G; Danieli G
    J Biomech; 2007; 40(7):1455-66. PubMed ID: 16935290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment and calibration of dual ultrasound transducers using a wedge phantom.
    Abeysekera JM; Rohling R
    Ultrasound Med Biol; 2011 Feb; 37(2):271-9. PubMed ID: 21208730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of accuracy in a high-capacity, six degree-of-freedom load cell: application to robotic testing of musculoskeletal joints.
    Gilbertson LG; Doehring TC; Livesay GA; Rudy TW; Kang JD; Woo SL
    Ann Biomed Eng; 1999; 27(6):839-43. PubMed ID: 10625155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the accuracy of a new displacement instrumentation for rotary tablet presses.
    Matz C; Bauer-Brandl A; Rigassi T; Schubert R; Becker D
    Drug Dev Ind Pharm; 1999 Feb; 25(2):117-30. PubMed ID: 10065345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal calibration of instrumented treadmills using an instrumented pole.
    Sloot LH; Houdijk H; van der Krogt MM; Harlaar J
    Med Eng Phys; 2016 Aug; 38(8):785-92. PubMed ID: 27180211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain gauged six-component load transducer for use in upper limb biomechanics.
    Runciman RJ; Nicol AC
    Proc Inst Mech Eng H; 1993; 207(4):231-7. PubMed ID: 7802874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.