These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 8884496)

  • 61. Preparation and application of immobilized enzymatic reactors for consecutive digestion with two enzymes.
    Wang B; Shangguan L; Wang S; Zhang L; Zhang W; Liu F
    J Chromatogr A; 2016 Dec; 1477():22-29. PubMed ID: 27884426
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) brushes as templates for enzyme immobilization.
    Cullen SP; Mandel IC; Gopalan P
    Langmuir; 2008 Dec; 24(23):13701-9. PubMed ID: 18956849
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of passivation and surface modification on the dissolution behavior and nano-surface characteristics of Ti-6Al-4V in Hank/EDTA solution.
    Lee TM
    J Mater Sci Mater Med; 2006 Jan; 17(1):15-27. PubMed ID: 16389468
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.
    Liu YJ; Cui SM; He C; Li JK; Wang QY
    Biomed Mater Eng; 2014; 24(1):263-9. PubMed ID: 24211906
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Performance comparison of three trypsin columns used in liquid chromatography.
    Šlechtová T; Gilar M; Kalíková K; Moore SM; Jorgenson JW; Tesařová E
    J Chromatogr A; 2017 Mar; 1490():126-132. PubMed ID: 28215403
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting].
    Wang H; Zhao BJ; Yan RZ; Wang C; Luo CC; Hu M
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):667-672. PubMed ID: 27806759
    [No Abstract]   [Full Text] [Related]  

  • 67. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells.
    Kim HJ; Kim SH; Kim MS; Lee EJ; Oh HG; Oh WM; Park SW; Kim WJ; Lee GJ; Choi NG; Koh JT; Dinh DB; Hardin RR; Johnson K; Sylvia VL; Schmitz JP; Dean DD
    J Biomed Mater Res A; 2005 Sep; 74(3):366-73. PubMed ID: 15983984
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanical performance of the new posterior spinal implant: effect of materials, connecting plate, and pedicle screw design.
    Chen PQ; Lin SJ; Wu SS; So H
    Spine (Phila Pa 1976); 2003 May; 28(9):881-6; discussion 887. PubMed ID: 12942002
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Grindability of cast Ti-6Al-4V alloyed with copper.
    Watanabe I; Aoki T; Okabe T
    J Prosthodont; 2009 Feb; 18(2):152-5. PubMed ID: 19141053
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The influence of effectors on the refolding (reactivation) of immobilized trypsin.
    Mozhaev VV; Martinek K
    Eur J Biochem; 1981 Mar; 115(1):143-7. PubMed ID: 7227363
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Real-Time Label-Free Kinetics Monitoring of Trypsin-Catalyzed Ester Hydrolysis by a Nanopore Sensor.
    Li M; Rauf A; Guo Y; Kang X
    ACS Sens; 2019 Nov; 4(11):2854-2857. PubMed ID: 31684727
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A protein molecule as a bioanalytical device. Chemomechanical protein sensors.
    Morozov VN; Morozova TYa
    FEBS Lett; 1984 Oct; 175(2):299-302. PubMed ID: 6479346
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enzymes as reagents in peptide synthesis: enzymatic removal of amine protecting groups.
    Meyers C; Glass JD
    Proc Natl Acad Sci U S A; 1975 Jun; 72(6):2193-6. PubMed ID: 1056024
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Immobilization of proteins and ligands using chlorocarbonates.
    Miron T; Wilchek M
    Methods Enzymol; 1987; 135():84-90. PubMed ID: 3600313
    [No Abstract]   [Full Text] [Related]  

  • 75. Application of immobilized enzymes for biomaterials used in surgery.
    Watanabe S; Shimizu Y; Teramatsu T; Murachi T; Hino T
    Methods Enzymol; 1988; 137():545-51. PubMed ID: 3374358
    [No Abstract]   [Full Text] [Related]  

  • 76. Deviation of Trypsin Activity Using Peptide Conformational Imprints.
    Kanubaddi KR; Huang PY; Chang YL; Wu CH; Li W; Kankala RK; Tai DF; Lee CH
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33513990
    [TBL] [Abstract][Full Text] [Related]  

  • 77. p-Nitrophenyl-p'-guanidinobenzoate HCl: a new active site titrant for trypsin.
    Chase T; Shaw E
    Biochem Biophys Res Commun; 1967 Nov; 29(4):508-14. PubMed ID: 16496527
    [No Abstract]   [Full Text] [Related]  

  • 78. The electrochemical activity determination of trypsin-like enzymes. I - Trypsin.
    Nigretto JM; Jozefowicz M
    Thromb Res; 1980 Mar; 17(5):611-22. PubMed ID: 7385097
    [No Abstract]   [Full Text] [Related]  

  • 79. Biomaterials, Part II. Symposium organized by the Scandinavian Orthopedic Association. Ystad, Sweden, September 29-October 1, 1986. Abstracts.
    Acta Orthop Scand; 1988 Jun; 59(3):342-57. PubMed ID: 3381672
    [No Abstract]   [Full Text] [Related]  

  • 80. Nanopatterning proteins and peptides.
    Christman KL; Enriquez-Rios VD; Maynard HD
    Soft Matter; 2006 Oct; 2(11):928-939. PubMed ID: 32680180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.