These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 8884500)
21. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. Fernández J; Larrañaga A; Etxeberria A; Wang W; Sarasua JR J Biomed Mater Res A; 2014 Oct; 102(10):3573-84. PubMed ID: 24243562 [TBL] [Abstract][Full Text] [Related]
22. Biodegradation behavior of ultra-high-strength hydroxyapatite/poly (L-lactide) composite rods for internal fixation of bone fractures. Furukawa T; Matsusue Y; Yasunaga T; Shikinami Y; Okuno M; Nakamura T Biomaterials; 2000 May; 21(9):889-98. PubMed ID: 10735465 [TBL] [Abstract][Full Text] [Related]
23. Autosterilization of biodegradable implants by injection molding process. König C; Ruffieux K; Wintermantel E; Blaser J J Biomed Mater Res; 1997; 38(2):115-9. PubMed ID: 9178738 [TBL] [Abstract][Full Text] [Related]
25. Long-term in vivo degradation and bone reaction to various polylactides. 1. One-year results. Mainil-Varlet P; Rahn B; Gogolewski S Biomaterials; 1997 Feb; 18(3):257-66. PubMed ID: 9031728 [TBL] [Abstract][Full Text] [Related]
26. Stability study of nanoparticles of poly(epsilon-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-co-glycolide). Lemoine D; Francois C; Kedzierewicz F; Preat V; Hoffman M; Maincent P Biomaterials; 1996 Nov; 17(22):2191-7. PubMed ID: 8922605 [TBL] [Abstract][Full Text] [Related]
27. Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co-ε-caprolactone) biomedical thermoplastic-elastomer. Fernández J; Etxeberria A; Ugartemendia JM; Petisco S; Sarasua JR J Mech Behav Biomed Mater; 2012 Aug; 12():29-38. PubMed ID: 22659093 [TBL] [Abstract][Full Text] [Related]
28. Branched poly(lactide) synthesized by enzymatic polymerization: effects of molecular branches and stereochemistry on enzymatic degradation and alkaline hydrolysis. Numata K; Srivastava RK; Finne-Wistrand A; Albertsson AC; Doi Y; Abe H Biomacromolecules; 2007 Oct; 8(10):3115-25. PubMed ID: 17722879 [TBL] [Abstract][Full Text] [Related]
29. Effect of different sterilization methods on the properties of commercial biodegradable polyesters for single-use, disposable medical devices. Zhao Y; Zhu B; Wang Y; Liu C; Shen C Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110041. PubMed ID: 31546462 [TBL] [Abstract][Full Text] [Related]
30. Pliable polylactide plates for guided bone regeneration: manufacturing and in vitro. Kellomäki M; Paasimaa S; Törmälä P Proc Inst Mech Eng H; 2000; 214(6):615-29. PubMed ID: 11201409 [TBL] [Abstract][Full Text] [Related]
31. Poly(ethylene glycol)-poly(L-lactide) diblock copolymer prevents aggregation of poly(L-lactide) microspheres during ethylene oxide gas sterilization. Choi Y; Kim SY; Moon MH; Kim SH; Lee KS; Byun Y Biomaterials; 2001 May; 22(9):995-1004. PubMed ID: 11311019 [TBL] [Abstract][Full Text] [Related]
32. Processing, annealing and sterilisation of poly-L-lactide. Weir NA; Buchanan FJ; Orr JF; Farrar DF; Boyd A Biomaterials; 2004 Aug; 25(18):3939-49. PubMed ID: 15046884 [TBL] [Abstract][Full Text] [Related]
33. A DSC study of the miscibility of poly(ethylene oxide)-block-poly(DL-lactide) copolymers with poly(DL-lactide). Pannu RK; Tanodekaew S; Li W; Collett JH; Attwood D; Booth C Biomaterials; 1999 Aug; 20(15):1381-7. PubMed ID: 10454009 [TBL] [Abstract][Full Text] [Related]
34. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends. Zhao H; Zhao G J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249 [TBL] [Abstract][Full Text] [Related]
35. Study on the shape memory effects of poly(L-lactide-co-epsilon-caprolactone) biodegradable polymers. Lu XL; Sun ZJ; Cai W; Gao ZY J Mater Sci Mater Med; 2008 Jan; 19(1):395-9. PubMed ID: 17607526 [TBL] [Abstract][Full Text] [Related]
36. Fixation of distal femoral osteotomies with self-reinforced poly(L/DL)lactide 70:30 and self-reinforced poly(L/DL)lactide 70: 30/bioactive glass composite rods. an experimental study on rabbits. Pyhältö T; Lapinsuo M; Pätiälä H; Niiranen H; Törmälä P; Rokkanen P J Biomater Sci Polym Ed; 2005; 16(6):725-44. PubMed ID: 16028593 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of absorbable poly(ortho esters) for use in surgical implants. Daniels AU; Andriano KP; Smutz WP; Chang MK; Heller J J Appl Biomater; 1994; 5(1):51-64. PubMed ID: 10146697 [TBL] [Abstract][Full Text] [Related]
38. The influence of composition of porous copolyester scaffolds on reactions induced by irradiation sterilization. Odelius K; Plikk P; Albertsson AC Biomaterials; 2008 Jan; 29(2):129-40. PubMed ID: 17936898 [TBL] [Abstract][Full Text] [Related]
39. Strength retention of 70:30 poly(L-lactide-co-D,L-lactide) following real-time aging. Moser RC; McManus AJ; Riley SL; Thomas KA J Biomed Mater Res B Appl Biomater; 2005 Oct; 75(1):56-63. PubMed ID: 16001395 [TBL] [Abstract][Full Text] [Related]
40. Characterization, degradation, and mechanical strength of poly(D,L-lactide-co-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-co-epsilon-caprolactone). Bramfeldt H; Sarazin P; Vermette P J Biomed Mater Res A; 2007 Nov; 83(2):503-11. PubMed ID: 17503493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]