These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8884502)
1. Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants. Berger-Gorbet M; Broxup B; Rivard C; Yahia LH J Biomed Mater Res; 1996 Oct; 32(2):243-8. PubMed ID: 8884502 [TBL] [Abstract][Full Text] [Related]
2. Biocompatibility of fixation materials in the brain. Mofid MM; Thompson RC; Pardo CA; Manson PN; Vander Kolk CA Plast Reconstr Surg; 1997 Jul; 100(1):14-20; discussion 21-2. PubMed ID: 9207654 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility studies on surgical-grade titanium-, cobalt-, and iron-base alloys. Lemons JE; Niemann KM; Weiss AB J Biomed Mater Res; 1976 Jul; 10(4):549-53. PubMed ID: 947918 [TBL] [Abstract][Full Text] [Related]
4. Hard, soft tissue and in vitro cell response to porous nickel-titanium: a biocompatibility evaluation. Rhalmi S; Odin M; Assad M; Tabrizian M; Rivard CH; Yahia LH Biomed Mater Eng; 1999; 9(3):151-62. PubMed ID: 10572619 [TBL] [Abstract][Full Text] [Related]
5. Effect of nickel-titanium shape memory metal alloy on bone formation. Kapanen A; Ryhänen J; Danilov A; Tuukkanen J Biomaterials; 2001 Sep; 22(18):2475-80. PubMed ID: 11516078 [TBL] [Abstract][Full Text] [Related]
6. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Talha M; Behera CK; Sinha OP Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251 [TBL] [Abstract][Full Text] [Related]
7. In vivo evaluation of a high-strength, high-ductility stainless steel for use in surgical implants. Syrett BC; Davis EE J Biomed Mater Res; 1979 Jul; 13(4):543-56. PubMed ID: 110810 [TBL] [Abstract][Full Text] [Related]
8. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246 [TBL] [Abstract][Full Text] [Related]
9. Osteogenesis and morphology of the peri-implant bone facing dental implants. Franchi M; Orsini E; Trire A; Quaranta M; Martini D; Piccari GG; Ruggeri A; Ottani V ScientificWorldJournal; 2004 Dec; 4():1083-95. PubMed ID: 15632988 [TBL] [Abstract][Full Text] [Related]
10. [Removal torques of small screws of steel and titanium with different surfaces]. Eulenberger J; Steinemann SG Unfallchirurg; 1990 Mar; 93(3):96-9. PubMed ID: 2343324 [TBL] [Abstract][Full Text] [Related]
11. Bone modeling and cell-material interface responses induced by nickel-titanium shape memory alloy after periosteal implantation. Ryhänen J; Kallioinen M; Tuukkanen J; Lehenkari P; Junila J; Niemelä E; Sandvik P; Serlo W Biomaterials; 1999 Jul; 20(14):1309-17. PubMed ID: 10403049 [TBL] [Abstract][Full Text] [Related]
12. Comparative in vitro biocompatibility of nickel-titanium, pure nickel, pure titanium, and stainless steel: genotoxicity and atomic absorption evaluation. Assad M; Lemieux N; Rivard CH; Yahia LH Biomed Mater Eng; 1999; 9(1):1-12. PubMed ID: 10436848 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. Armitage DA; Parker TL; Grant DM J Biomed Mater Res A; 2003 Jul; 66(1):129-37. PubMed ID: 12833439 [TBL] [Abstract][Full Text] [Related]
14. Auricle reconstruction with a nickel-titanium shape memory alloy as the framework. Chi FL; Wang SJ; Liu HJ Laryngoscope; 2007 Feb; 117(2):248-52. PubMed ID: 17202909 [TBL] [Abstract][Full Text] [Related]
15. Osseointegration of metallic implants. I. Light microscopy in the rabbit. Linder L Acta Orthop Scand; 1989 Apr; 60(2):129-34. PubMed ID: 2658464 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of bone apposition to stainless steel cortical screws by surface modification using heat treatment: an experimental study. Tzur I; Goodship AE; Steinman A; Maltz L; Oron U J Orthop Trauma; 1998; 12(7):504-9. PubMed ID: 9781775 [TBL] [Abstract][Full Text] [Related]
17. [Bone histocompatibility of surface modified nitinol memory alloy by coating titanium-niobium alloy]. Wang A; Li Y; Zhou H; Peng J; Guo Q; Xu W; Zhao B; Tian Y; Wang X; Yuan M; Lu S Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jul; 24(7):797-800. PubMed ID: 20695374 [TBL] [Abstract][Full Text] [Related]
18. In vivo biocompatibility evaluation of 3D-printed nickel-titanium fabricated by selective laser melting. Naujokat H; Gökkaya AI; Açil Y; Loger K; Klüter T; Fuchs S; Wiltfang J J Mater Sci Mater Med; 2022 Jan; 33(2):13. PubMed ID: 35061114 [TBL] [Abstract][Full Text] [Related]
19. Remarkable biocompatibility enhancement of porous NiTi alloys by a new surface modification approach: in-situ nitriding and in vitro and in vivo evaluation. Li H; Yuan B; Gao Y; Chung CY; Zhu M J Biomed Mater Res A; 2011 Dec; 99(4):544-53. PubMed ID: 21936044 [TBL] [Abstract][Full Text] [Related]
20. Histologic evaluation of the osseous adaptation to titanium and hydroxyapatite-coated titanium implants. Jansen JA; van de Waerden JP; Wolke JG; de Groot K J Biomed Mater Res; 1991 Aug; 25(8):973-89. PubMed ID: 1655798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]