These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8884620)

  • 1. Metabolic activity in antigenically identified neurons: a double labeling method for high-resolution 2-deoxyglucose and immunohistochemistry.
    McCasland JS
    J Neurosci Methods; 1996 Sep; 68(1):113-23. PubMed ID: 8884620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New high-resolution 2-deoxyglucose method featuring double labeling and automated data collection.
    McCasland JS; Woolsey TA
    J Comp Neurol; 1988 Dec; 278(4):543-54. PubMed ID: 3068265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic neurons in barrel cortex show strong, whisker-dependent metabolic activation during normal behavior.
    McCasland JS; Hibbard LS
    J Neurosci; 1997 Jul; 17(14):5509-27. PubMed ID: 9204933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.
    McCasland JS; Woolsey TA
    J Comp Neurol; 1988 Dec; 278(4):555-69. PubMed ID: 3230170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-binding protein phenotype defines metabolically distinct groups of neurons in barrel cortex of behaving hamsters.
    Maier DL; McCasland JS
    Exp Neurol; 1997 May; 145(1):71-80. PubMed ID: 9184110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry.
    Nehlig A; Wittendorp-Rechenmann E; Lam CD
    J Cereb Blood Flow Metab; 2004 Sep; 24(9):1004-14. PubMed ID: 15356421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale plasticity in barrel cortex following repeated whisker trimming in young adult hamsters.
    Maier DL; Grieb GM; Stelzner DJ; McCasland JS
    Exp Neurol; 2003 Dec; 184(2):737-45. PubMed ID: 14769365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of patchy metabolic labeling in the somatosensory cortex of cats: a possible role for intrinsic inhibitory circuitry.
    Juliano SL; Whitsel BL; Tommerdahl M; Cheema SS
    J Neurosci; 1989 Jan; 9(1):1-12. PubMed ID: 2913199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attempts to combine 2-deoxyglucose autoradiography and tyrosine hydroxylase immunohistochemistry.
    Hökfelt T; Smith CB; Norell G; Peters A; Crane A; Goldstein M; Brownstein M; Sokoloff L
    Neuroscience; 1984 Oct; 13(2):495-512. PubMed ID: 6151149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute whisker removal reduces neuronal activity in barrels of mouse SmL cortex.
    Durham D; Woolsey TA
    J Comp Neurol; 1978 Apr; 178(4):629-44. PubMed ID: 632373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study.
    Durham D; Woolsey TA
    J Comp Neurol; 1985 May; 235(1):97-110. PubMed ID: 2985659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single vibrissal cortical column in SI cortex of rat and its alterations in neonatal and adult vibrissa-deafferented animals: a quantitative 2DG study.
    Kossut M; Hand PJ; Greenberg J; Hand CL
    J Neurophysiol; 1988 Aug; 60(2):829-52. PubMed ID: 3171652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of metabolic activity patterns in the somatosensory cortex of cats.
    Juliano SL; Code RA; Tommerdahl M; Eslin DE
    J Neurophysiol; 1993 Nov; 70(5):2117-27. PubMed ID: 8294973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-deoxyglucose autoradiography of single motor units: labeling of individual acutely active muscle fibers.
    Toop J; Burke RE; Dum RP; O'Donovan MJ; Smith CB
    J Neurosci Methods; 1982 Mar; 5(3):283-9. PubMed ID: 7078259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sensory deprivation upon a single cortical vibrissal column: a 2DG study.
    Kossut M
    Exp Brain Res; 1992; 90(3):639-42. PubMed ID: 1426120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic mapping.
    McCasland JS; Graczyk GM
    Curr Protoc Neurosci; 2001 May; Chapter 1():Unit1.6. PubMed ID: 18428452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A metabolic map of cytochrome oxidase in the rat brain: histochemical, densitometric and biochemical studies.
    Hevner RF; Liu S; Wong-Riley MT
    Neuroscience; 1995 Mar; 65(2):313-42. PubMed ID: 7777153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined 2-deoxyglucose and neurophysiological study of primate somatosensory cortex.
    Juliano SL; Whitsel BL
    J Comp Neurol; 1987 Sep; 263(4):514-25. PubMed ID: 3667986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of increased metabolic activity in somatosensory cortex of monkeys Macaca fascicularis, subjected to controlled cutaneous stimulation: a 2-deoxyglucose study.
    Juliano SL; Hand PJ; Whitsel BL
    J Neurophysiol; 1981 Dec; 46(6):1260-84. PubMed ID: 6275042
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.