These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
282 related articles for article (PubMed ID: 8885271)
61. Interactions between an anti-sigma protein and two sigma factors that regulate the pyoverdine signaling pathway in Pseudomonas aeruginosa. Edgar RJ; Xu X; Shirley M; Konings AF; Martin LW; Ackerley DF; Lamont IL BMC Microbiol; 2014 Nov; 14():287. PubMed ID: 25433393 [TBL] [Abstract][Full Text] [Related]
62. The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. West SE; Sample AK; Runyen-Janecky LJ J Bacteriol; 1994 Dec; 176(24):7532-42. PubMed ID: 8002577 [TBL] [Abstract][Full Text] [Related]
63. Transcription of the principal sigma-factor genes, rpoD and rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Fujita M; Tanaka K; Takahashi H; Amemura A Mol Microbiol; 1994 Sep; 13(6):1071-7. PubMed ID: 7531806 [TBL] [Abstract][Full Text] [Related]
64. Effect of the amino acid substitution in the DNA-binding domain of the Fur regulator on production of pyoverdine. Valešová R; Palyzová A; Marešová H; Stěpánek V; Babiak P; Kyslík P Folia Microbiol (Praha); 2013 Jul; 58(4):311-7. PubMed ID: 23180123 [TBL] [Abstract][Full Text] [Related]
65. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Gambello MJ; Kaye S; Iglewski BH Infect Immun; 1993 Apr; 61(4):1180-4. PubMed ID: 8454322 [TBL] [Abstract][Full Text] [Related]
66. Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Burrowes E; Abbas A; O'Neill A; Adams C; O'Gara F Res Microbiol; 2005; 156(1):7-16. PubMed ID: 15636743 [TBL] [Abstract][Full Text] [Related]
67. The ornibactin biosynthesis and transport genes of Burkholderia cenocepacia are regulated by an extracytoplasmic function sigma factor which is a part of the Fur regulon. Agnoli K; Lowe CA; Farmer KL; Husnain SI; Thomas MS J Bacteriol; 2006 May; 188(10):3631-44. PubMed ID: 16672617 [TBL] [Abstract][Full Text] [Related]
68. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Schmidberger A; Henkel M; Hausmann R; Schwartz T Appl Microbiol Biotechnol; 2014 Aug; 98(15):6725-37. PubMed ID: 24752844 [TBL] [Abstract][Full Text] [Related]
69. The purification of the σ Casas Garcia GP; Perugini MA; Lamont IL; Maher MJ Protein Expr Purif; 2019 Aug; 160():11-18. PubMed ID: 30878602 [TBL] [Abstract][Full Text] [Related]
70. Complex regulation of AprA metalloprotease in Pseudomonas fluorescens M114: evidence for the involvement of iron, the ECF sigma factor, PbrA and pseudobactin M114 siderophore. Maunsell B; Adams C; O'Gara F Microbiology (Reading); 2006 Jan; 152(Pt 1):29-42. PubMed ID: 16385113 [TBL] [Abstract][Full Text] [Related]
71. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Frangipani E; Visaggio D; Heeb S; Kaever V; Cámara M; Visca P; Imperi F Environ Microbiol; 2014 Mar; 16(3):676-88. PubMed ID: 23796404 [TBL] [Abstract][Full Text] [Related]
72. Physiological characterization of Pseudomonas aeruginosa during exotoxin A synthesis: glutamate, iron limitation, and aconitase activity. Somerville G; Mikoryak CA; Reitzer L J Bacteriol; 1999 Feb; 181(4):1072-8. PubMed ID: 9973331 [TBL] [Abstract][Full Text] [Related]
73. Analysis of transcription of the exotoxin A gene of Pseudomonas aeruginosa. Grant CC; Vasil ML J Bacteriol; 1986 Dec; 168(3):1112-9. PubMed ID: 2430945 [TBL] [Abstract][Full Text] [Related]
74. Effects of iron and temperature on expression of the Pseudomonas aeruginosa tolQRA genes: role of the ferric uptake regulator. Lafontaine ER; Sokol PA J Bacteriol; 1998 Jun; 180(11):2836-41. PubMed ID: 9603869 [TBL] [Abstract][Full Text] [Related]
75. Repression of tonB transcription during anaerobic growth requires Fur binding at the promoter and a second factor binding upstream. Young GM; Postle K Mol Microbiol; 1994 Mar; 11(5):943-54. PubMed ID: 8022270 [TBL] [Abstract][Full Text] [Related]
76. Involvement of the RpoN protein in the transcription of the oprE gene in Pseudomonas aeruginosa. Yamano Y; Nishikawa T; Komatsu Y FEMS Microbiol Lett; 1998 May; 162(1):31-7. PubMed ID: 9595661 [TBL] [Abstract][Full Text] [Related]
77. Transcriptional regulation of pseudobactin synthesis in the plant growth-promoting Pseudomonas B10. Leoni L; Ambrosi C; Petrucca A; Visca P FEMS Microbiol Lett; 2002 Mar; 208(2):219-25. PubMed ID: 11959440 [TBL] [Abstract][Full Text] [Related]
78. Characterization of the achromobactin iron acquisition operon in Sodalis glossinidius. Smith CL; Weiss BL; Aksoy S; Runyen-Janecky LJ Appl Environ Microbiol; 2013 May; 79(9):2872-81. PubMed ID: 23435882 [TBL] [Abstract][Full Text] [Related]
79. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Cornelis P; Tahrioui A; Lesouhaitier O; Bouffartigues E; Feuilloley M; Baysse C; Chevalier S Biometals; 2023 Apr; 36(2):255-261. PubMed ID: 35171432 [TBL] [Abstract][Full Text] [Related]
80. PfeR, an enterobactin-responsive activator of ferric enterobactin receptor gene expression in Pseudomonas aeruginosa. Dean CR; Neshat S; Poole K J Bacteriol; 1996 Sep; 178(18):5361-9. PubMed ID: 8808923 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]