These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 8885830)
1. Inactivation of human lung tryptase: evidence for a re-activatable tetrameric intermediate and active monomers. Addington AK; Johnson DA Biochemistry; 1996 Oct; 35(42):13511-8. PubMed ID: 8885830 [TBL] [Abstract][Full Text] [Related]
2. Regulation of human mast cell beta-tryptase: conversion of inactive monomer to active tetramer at acid pH. Ren S; Sakai K; Schwartz LB J Immunol; 1998 May; 160(9):4561-9. PubMed ID: 9574563 [TBL] [Abstract][Full Text] [Related]
3. Formation of active monomers from tetrameric human beta-tryptase. Fajardo I; Pejler G Biochem J; 2003 Feb; 369(Pt 3):603-10. PubMed ID: 12387726 [TBL] [Abstract][Full Text] [Related]
4. Human beta-tryptase: detection and characterization of the active monomer and prevention of tetramer reconstitution by protease inhibitors. Fukuoka Y; Schwartz LB Biochemistry; 2004 Aug; 43(33):10757-64. PubMed ID: 15311937 [TBL] [Abstract][Full Text] [Related]
5. Immunologic and physicochemical evidence for conformational changes occurring on conversion of human mast cell tryptase from active tetramer to inactive monomer. Production of monoclonal antibodies recognizing active tryptase. Schwartz LB; Bradford TR; Lee DC; Chlebowski JF J Immunol; 1990 Mar; 144(6):2304-11. PubMed ID: 2179409 [TBL] [Abstract][Full Text] [Related]
6. Recombinant human mast cell tryptase beta: stable expression in Pichia pastoris and purification of fully active enzyme. Niles AL; Maffitt M; Haak-Frendscho M; Wheeless CJ; Johnson DA Biotechnol Appl Biochem; 1998 Oct; 28 ( Pt 2)():125-31. PubMed ID: 9756742 [TBL] [Abstract][Full Text] [Related]
7. The interaction of human tryptase-beta with small molecule inhibitors provides new insights into the unusual functional instability and quaternary structure of the protease. Selwood T; Smolensky H; McCaslin DR; Schechter NM Biochemistry; 2005 Mar; 44(9):3580-90. PubMed ID: 15736967 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous inactivation of human tryptase involves conformational changes consistent with conversion of the active site to a zymogen-like structure. Selwood T; McCaslin DR; Schechter NM Biochemistry; 1998 Sep; 37(38):13174-83. PubMed ID: 9748324 [TBL] [Abstract][Full Text] [Related]
9. Human beta-tryptase is a ring-like tetramer with active sites facing a central pore. Pereira PJ; Bergner A; Macedo-Ribeiro S; Huber R; Matschiner G; Fritz H; Sommerhoff CP; Bode W Nature; 1998 Mar; 392(6673):306-11. PubMed ID: 9521329 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous inactivation of human lung tryptase as probed by size-exclusion chromatography and chemical cross-linking: dissociation of active tetrameric enzyme into inactive monomers is the primary event of the entire process. Kozik A; Potempa J; Travis J Biochim Biophys Acta; 1998 Jun; 1385(1):139-48. PubMed ID: 9630576 [TBL] [Abstract][Full Text] [Related]
11. Structural requirements and mechanism for heparin-dependent activation and tetramerization of human betaI- and betaII-tryptase. Hallgren J; Lindahl S; Pejler G J Mol Biol; 2005 Jan; 345(1):129-39. PubMed ID: 15567416 [TBL] [Abstract][Full Text] [Related]
12. Structural requirements and mechanism for heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell protease-6: formation of active tryptase monomers in the presence of low molecular weight heparin. Hallgren J; Spillmann D; Pejler G J Biol Chem; 2001 Nov; 276(46):42774-81. PubMed ID: 11533057 [TBL] [Abstract][Full Text] [Related]
13. Regulation of tryptase from human lung mast cells by heparin. Stabilization of the active tetramer. Schwartz LB; Bradford TR J Biol Chem; 1986 Jun; 261(16):7372-9. PubMed ID: 3519608 [TBL] [Abstract][Full Text] [Related]
15. Characterization of three distinct catalytic forms of human tryptase-beta: their interrelationships and relevance. Schechter NM; Choi EJ; Selwood T; McCaslin DR Biochemistry; 2007 Aug; 46(33):9615-29. PubMed ID: 17655281 [TBL] [Abstract][Full Text] [Related]
16. Neutrophil myeloperoxidase is a potent and selective inhibitor of mast cell tryptase. Cregar L; Elrod KC; Putnam D; Moore WR Arch Biochem Biophys; 1999 Jun; 366(1):125-30. PubMed ID: 10334872 [TBL] [Abstract][Full Text] [Related]
17. Structural changes associated with the spontaneous inactivation of the serine proteinase human tryptase. Schechter NM; Eng GY; Selwood T; McCaslin DR Biochemistry; 1995 Aug; 34(33):10628-38. PubMed ID: 7654717 [TBL] [Abstract][Full Text] [Related]
18. Human mast cell tryptase isoforms: separation and examination of substrate-specificity differences. Little SS; Johnson DA Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):341-6. PubMed ID: 7733867 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of human mast cell chymase by secretory leukocyte proteinase inhibitor: enhancement of the interaction by heparin. Walter M; Plotnick M; Schechter NM Arch Biochem Biophys; 1996 Mar; 327(1):81-8. PubMed ID: 8615699 [TBL] [Abstract][Full Text] [Related]
20. Expression and characterization of recombinant mast cell tryptase. Chan H; Elrod KC; Numerof RP; Sideris S; Clark JM Protein Expr Purif; 1999 Apr; 15(3):251-7. PubMed ID: 10092484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]