BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8885832)

  • 21. Structure determination of an FMN reductase from Pseudomonas aeruginosa PA01 using sulfur anomalous signal.
    Agarwal R; Bonanno JB; Burley SK; Swaminathan S
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):383-91. PubMed ID: 16552139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioluminescence: fundamental and practical aspects.
    Schram E
    Arch Int Physiol Biochim; 1973 Sep; 81(3):561-78. PubMed ID: 4127503
    [No Abstract]   [Full Text] [Related]  

  • 23. Loop 6 and the β-hairpin flap are structural hotspots that determine cofactor specificity in the FMN-dependent family of ene-reductases.
    Kerschbaumer B; Totaro MG; Friess M; Breinbauer R; Bijelic A; Macheroux P
    FEBS J; 2024 Apr; 291(7):1560-1574. PubMed ID: 38263933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of bacterial luciferase and FMN reductase on glass rods.
    Jablonski E; DeLuca M
    Proc Natl Acad Sci U S A; 1976 Nov; 73(11):3848-51. PubMed ID: 11465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor.
    Huijbers MM; Martínez-Júlvez M; Westphal AH; Delgado-Arciniega E; Medina M; van Berkel WJ
    Sci Rep; 2017 Mar; 7():43880. PubMed ID: 28256579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on luciferase from Photobacterium phosphoreum. VIII. FMN-H2O2 initiated bioluminescence and the thermodynamics of the elementary steps of the luciferase reaction.
    Watanabe T; Nakamura T
    J Biochem; 1976 Mar; 79(3):489-95. PubMed ID: 950335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and properties of a NAD(P)H:flavin oxidoreductase from the luminous bacterium, Beneckea harveyi.
    Michaliszyn GA; Wing SS; Meighen EA
    J Biol Chem; 1977 Nov; 252(21):7495-9. PubMed ID: 303240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization of the free radical on the flavin mononucleotide of the air-stable semiquinone state of NADPH-cytochrome P-450 reductase using 31P NMR spectroscopy.
    Otvos JD; Krum DP; Masters BS
    Biochemistry; 1986 Nov; 25(22):7220-8. PubMed ID: 3099832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of the bacterial luciferase-flavin mononucleotide complex combining flexible docking with structure-activity data.
    Lin LY; Sulea T; Szittner R; Vassilyev V; Purisima EO; Meighen EA
    Protein Sci; 2001 Aug; 10(8):1563-71. PubMed ID: 11468353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Redox-Regulated, Heterodimeric NADH:cinnamate Reductase in Vibrio ruber.
    Bertsova YV; Serebryakova MV; Anashkin VA; Baykov AA; Bogachev AV
    Biochemistry (Mosc); 2024 Feb; 89(2):241-256. PubMed ID: 38622093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase.
    Fontecave M; Eliasson R; Reichard P
    J Biol Chem; 1987 Sep; 262(25):12325-31. PubMed ID: 3305505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of F420H2:NADP+ oxidoreductase with and without its substrates bound.
    Warkentin E; Mamat B; Sordel-Klippert M; Wicke M; Thauer RK; Iwata M; Iwata S; Ermler U; Shima S
    EMBO J; 2001 Dec; 20(23):6561-9. PubMed ID: 11726492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of NfsA, the major Escherichia coli nitroreductase, to a flavin reductase with an activity similar to that of Frp, a flavin reductase in Vibrio harveyi, by a single amino acid substitution.
    Zenno S; Kobori T; Tanokura M; Saigo K
    J Bacteriol; 1998 Jan; 180(2):422-5. PubMed ID: 9440535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of NADPH-dependent flavin reductase. An enzyme required for the activation of chorismate synthase in Bacillus subtilis.
    Hasan N; Nester EW
    J Biol Chem; 1978 Jul; 253(14):4987-92. PubMed ID: 97284
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioluminescent microassay of various metabolites using bacterial luciferase co-immobilized with multienzyme systems.
    Ugarova NN; Lebedeva OV; Frumkina IG
    Anal Biochem; 1988 Sep; 173(2):221-7. PubMed ID: 3263818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational plasticity surrounding the active site of NADH oxidase from Thermus thermophilus.
    Miletti T; Di Trani J; Levros LC; Mittermaier A
    Protein Sci; 2015 Jul; 24(7):1114-28. PubMed ID: 25970557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of a phosphorothioate analogue of flavin mononucleotide: reconstitution of the FMN-free form of NADPH-cytochrome P-450 reductase.
    Calhoun JP; Miziorko HM; Otvos JD; Krum DP; Ugent S; Masters BS
    Biochemistry; 1987 Aug; 26(17):5344-50. PubMed ID: 3118943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity and stability of the luciferase--flavin intermediate.
    Becvar JE; Tu SC; Hastings JW
    Biochemistry; 1978 May; 17(9):1807-12. PubMed ID: 306832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chaotropic resolution of high molecular weight (type I) NADH dehydrogenase, and reassociation of flavin-rich (type II) and flavin-poor subunits.
    Dooijewaard G; Slater EC; van Dijk PJ; de Bruin GJ
    Biochim Biophys Acta; 1978 Sep; 503(3):405-24. PubMed ID: 210806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on luciferase form Photobacterium phosphoreum. V. An enzyme-FMN intermediate complex in the bioluminescent reaction.
    Yoshida K; Takahashi M; Nakamura T
    J Biochem; 1974 Mar; 75(3):583-9. PubMed ID: 4834652
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.