BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 8885832)

  • 41. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vibrio harveyi NADPH-FMN oxidoreductase arg203 as a critical residue for NADPH recognition and binding.
    Wang H; Lei B; Tu SC
    Biochemistry; 2000 Jul; 39(26):7813-9. PubMed ID: 10869187
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crystallization and preliminary X-ray diffraction studies of human cytochrome P450 reductase.
    Zhao Q; Smith G; Modi S; Paine M; Wolf RC; Tew D; Lian LY; Primrose WU; Roberts GC; Driessen HP
    J Struct Biol; 1996; 116(2):320-5. PubMed ID: 8812989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR.
    Vincent B; Morellet N; Fatemi F; Aigrain L; Truan G; Guittet E; Lescop E
    J Mol Biol; 2012 Jul; 420(4-5):296-309. PubMed ID: 22543241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structures of Mycobacterium tuberculosispyridoxine 5'-phosphate oxidase and its complexes with flavin mononucleotide and pyridoxal 5'-phosphate.
    Biswal BK; Cherney MM; Wang M; Garen C; James MN
    Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1492-9. PubMed ID: 16239726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure--function studies on the iron-sulfur flavoenzyme glutamate synthase: an unexpectedly complex self-regulated enzyme.
    Vanoni MA; Curti B
    Arch Biochem Biophys; 2005 Jan; 433(1):193-211. PubMed ID: 15581577
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The three-dimensional structure of flavodoxin reductase from Escherichia coli at 1.7 A resolution.
    Ingelman M; Bianchi V; Eklund H
    J Mol Biol; 1997 Apr; 268(1):147-57. PubMed ID: 9149148
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and biochemical characterization of flavoredoxin from the archaeon Methanosarcina acetivorans.
    Suharti S; Murakami KS; de Vries S; Ferry JG
    Biochemistry; 2008 Nov; 47(44):11528-35. PubMed ID: 18842001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of long-chain alkane monooxygenase (LadA) in complex with coenzyme FMN: unveiling the long-chain alkane hydroxylase.
    Li L; Liu X; Yang W; Xu F; Wang W; Feng L; Bartlam M; Wang L; Rao Z
    J Mol Biol; 2008 Feb; 376(2):453-65. PubMed ID: 18164311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of Escherichia coli QOR quinone oxidoreductase complexed with NADPH.
    Thorn JM; Barton JD; Dixon NE; Ollis DL; Edwards KJ
    J Mol Biol; 1995 Jun; 249(4):785-99. PubMed ID: 7602590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural studies on flavin reductase PheA2 reveal binding of NAD in an unusual folded conformation and support novel mechanism of action.
    van den Heuvel RH; Westphal AH; Heck AJ; Walsh MA; Rovida S; van Berkel WJ; Mattevi A
    J Biol Chem; 2004 Mar; 279(13):12860-7. PubMed ID: 14703520
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.
    Lei B; Liu M; Huang S; Tu SC
    J Bacteriol; 1994 Jun; 176(12):3552-8. PubMed ID: 8206832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the FAD binding domain of cytochrome P450 reductase.
    Hodgson AV; Strobel HW
    Arch Biochem Biophys; 1996 Jan; 325(1):99-106. PubMed ID: 8554349
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystallization and preliminary crystallographic analysis of the major NAD(P)H: FMN oxidoreductase of Vibrio fischeri ATCC 7744.
    Koike H; Sasaki H; Tanokura M; Zenno S; Saigo K
    J Struct Biol; 1996; 117(1):70-2. PubMed ID: 8776889
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR-like module and isothermal titration calorimetry.
    Wolthers KR; Lou X; Toogood HS; Leys D; Scrutton NS
    Biochemistry; 2007 Oct; 46(42):11833-44. PubMed ID: 17892308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.