These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 888669)

  • 1. Effect of distances and angles of arm movements in the horizontal plane and bits of information on performance time.
    Raouf A; Elsayed EA
    Act Nerv Super (Praha); 1977 May; 19(2):96-101. PubMed ID: 888669
    [No Abstract]   [Full Text] [Related]  

  • 2. Parietal area 5 activity does not reflect the differential time-course of motor output kinetics during arm-reaching and isometric-force tasks.
    Hamel-Pâquet C; Sergio LE; Kalaska JF
    J Neurophysiol; 2006 Jun; 95(6):3353-70. PubMed ID: 16481461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of head-to-trunk position on the direction of arm movements before, during, and after space flight.
    Berger M; Lechner-Steinleitner S; Kozlovskaya I; Holzmüller G; Mescheriakov S; Sokolov A; Gerstenbrand F
    J Vestib Res; 1998; 8(5):341-54. PubMed ID: 9770653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory muscle activity for sitting posture during upper extremity task performance in paraplegic persons.
    Seelen HA; Vuurman EF
    Scand J Rehabil Med; 1991; 23(2):89-96. PubMed ID: 1896835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor cortex neural correlates of output kinematics and kinetics during isometric-force and arm-reaching tasks.
    Sergio LE; Hamel-Pâquet C; Kalaska JF
    J Neurophysiol; 2005 Oct; 94(4):2353-78. PubMed ID: 15888522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related differences in performance of stereotype arm movements: movement and posture interaction.
    Błaszczyk JW; Lowe DL; Hansen PD
    Acta Neurobiol Exp (Wars); 1997; 57(1):49-57. PubMed ID: 9407691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mentally represented motor actions in normal aging II. The influence of the gravito-inertial context on the duration of overt and covert arm movements.
    Personnier P; Paizis C; Ballay Y; Papaxanthis C
    Behav Brain Res; 2008 Jan; 186(2):273-83. PubMed ID: 17913253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of altering initial position on movement direction and extent.
    Sainburg RL; Lateiner JE; Latash ML; Bagesteiro LB
    J Neurophysiol; 2003 Jan; 89(1):401-15. PubMed ID: 12522189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor planning of arm movements is direction-dependent in the gravity field.
    Gentili R; Cahouet V; Papaxanthis C
    Neuroscience; 2007 Mar; 145(1):20-32. PubMed ID: 17224242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decline in motor prediction in elderly subjects: right versus left arm differences in mentally simulated motor actions.
    Skoura X; Personnier P; Vinter A; Pozzo T; Papaxanthis C
    Cortex; 2008 Oct; 44(9):1271-8. PubMed ID: 18761141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb position drift: implications for control of posture and movement.
    Brown LE; Rosenbaum DA; Sainburg RL
    J Neurophysiol; 2003 Nov; 90(5):3105-18. PubMed ID: 14615428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertical torque allows recording of anticipatory postural adjustments associated with slow, arm-raising movements.
    Bleuse S; Cassim F; Blatt JL; Defebvre L; Derambure P; Guieu JD
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):693-9. PubMed ID: 15921833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispace asymmetries and laterality effects in arm positioning.
    Imanaka K; Abernethy B; Yamauchi M; Funase K; Nishihira Y
    Brain Cogn; 1995 Dec; 29(3):232-53. PubMed ID: 8838384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial properties of the arm are accurately predicted during motor imagery.
    Gentili R; Cahouet V; Ballay Y; Papaxanthis C
    Behav Brain Res; 2004 Dec; 155(2):231-9. PubMed ID: 15364482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of foreperiod duration on anticipatory postural adjustments: determination of an optimal preparation in standing and sitting for a raising arm movement.
    Cuisinier R; Olivier I; Nougier V
    Brain Res Bull; 2005 Jul; 66(2):163-70. PubMed ID: 15982534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of temporal and spatial accuracy of alternating arm movements in multiple sclerosis patients treated with deep brain stimulation of the thalamic ventralis intermedius nucleus (VIM).
    Spiegel J; Dillmann U; Moringlane JR
    Zentralbl Neurochir; 2007 May; 68(2):67-72. PubMed ID: 17614086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handedness: dominant arm advantages in control of limb dynamics.
    Bagesteiro LB; Sainburg RL
    J Neurophysiol; 2002 Nov; 88(5):2408-21. PubMed ID: 12424282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning to juggle: on the assembly of functional subsystems into a task-specific dynamical organization.
    Huys R; Daffertshofer A; Beek PJ
    Biol Cybern; 2003 Apr; 88(4):302-18. PubMed ID: 12690489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exploratory study of arm-reach dynamics under several levels of gravity.
    Aume NM
    Ergonomics; 1973 Jul; 16(4):481-94. PubMed ID: 4757413
    [No Abstract]   [Full Text] [Related]  

  • 20. A simple method to compare body and upper limb kinetics in the course of pointing task.
    Richardson J; Bouisset S; Hansen C; Ribreau C
    Comput Methods Biomech Biomed Engin; 2012; 15 Suppl 1():371-3. PubMed ID: 23009545
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.