These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8887252)

  • 1. Physiological and pathophysiological role of the epithelial sodium channel in the control of blood pressure.
    Hummler E; Rossier BC
    Kidney Blood Press Res; 1996; 19(3-4):160-5. PubMed ID: 8887252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of renal apical Na transport systems in the control of blood pressure.
    Meneton PG; Warnock D
    Am J Kidney Dis; 2001 Jan; 37(1 Suppl 2):S39-47. PubMed ID: 11158860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of sodium transport.
    Aperia AC
    Curr Opin Nephrol Hypertens; 1995 Sep; 4(5):416-20. PubMed ID: 8564445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ubiquitylation and control of renal Na+ balance and blood pressure.
    Ronzaud C; Staub O
    Physiology (Bethesda); 2014 Jan; 29(1):16-26. PubMed ID: 24382868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The epithelial sodium channel in hypertension: genetic heterogeneity and implications for treatment with amiloride.
    Swift PA; MacGregor GA
    Am J Pharmacogenomics; 2004; 4(3):161-8. PubMed ID: 15174897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The epithelial sodium channel in hypertension.
    Warnock DG
    Curr Hypertens Rep; 1999; 1(2):158-63. PubMed ID: 10981060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal Dysfunction Induced by Kidney-Specific Gene Deletion of
    Ueda K; Nishimoto M; Hirohama D; Ayuzawa N; Kawarazaki W; Watanabe A; Shimosawa T; Loffing J; Zhang MZ; Marumo T; Fujita T
    Hypertension; 2017 Jul; 70(1):111-118. PubMed ID: 28559392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The epithelial sodium channel: from molecule to disease.
    Schild L
    Rev Physiol Biochem Pharmacol; 2004; 151():93-107. PubMed ID: 15146350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal tubule angiotensin II type 1 receptor-associated protein promotes natriuresis and inhibits salt-sensitive blood pressure elevation.
    Wakui H; Uneda K; Tamura K; Ohsawa M; Azushima K; Kobayashi R; Ohki K; Dejima T; Kanaoka T; Tsurumi-Ikeya Y; Matsuda M; Haruhara K; Nishiyama A; Yabana M; Fujikawa T; Yamashita A; Umemura S
    J Am Heart Assoc; 2015 Mar; 4(3):e001594. PubMed ID: 25792129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal tubular transport and the genetic basis of hypertensive disease.
    Lang F; Capasso G; Schwab M; Waldegger S
    Clin Exp Nephrol; 2005 Jun; 9(2):91-9. PubMed ID: 15980941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: a double-blinded, randomized, placebo-controlled crossover trial.
    Matthesen SK; Larsen T; Vase H; Lauridsen TG; Jensen JM; Pedersen EB
    Clin Exp Hypertens; 2013; 35(5):313-24. PubMed ID: 22966789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Liddle syndrome: Pathogenesis, pathophysiology, and therapy].
    Ohta A; Sasaki S
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():513-6. PubMed ID: 16523945
    [No Abstract]   [Full Text] [Related]  

  • 13. Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance.
    Rubera I; Loffing J; Palmer LG; Frindt G; Fowler-Jaeger N; Sauter D; Carroll T; McMahon A; Hummler E; Rossier BC
    J Clin Invest; 2003 Aug; 112(4):554-65. PubMed ID: 12925696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal transporter activation during angiotensin-II hypertension is blunted in interferon-γ-/- and interleukin-17A-/- mice.
    Kamat NV; Thabet SR; Xiao L; Saleh MA; Kirabo A; Madhur MS; Delpire E; Harrison DG; McDonough AA
    Hypertension; 2015 Mar; 65(3):569-76. PubMed ID: 25601932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+,K+-ATPase trafficking in response to GPCR signals and intracellular sodium.
    Efendiev R; Krmar RT; Ogimoto G; Zwiller J; Tripodi G; Katz AI; Bianchi G; Pedemonte CH; Bertorello AM
    Circ Res; 2004 Nov; 95(11):1100-8. PubMed ID: 15528469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse model of type II Bartter's syndrome. II. Altered expression of renal sodium- and water-transporting proteins.
    Wagner CA; Loffing-Cueni D; Yan Q; Schulz N; Fakitsas P; Carrel M; Wang T; Verrey F; Geibel JP; Giebisch G; Hebert SC; Loffing J
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1373-80. PubMed ID: 18322017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epithelial sodium channel and its implication in the control of blood pressure.
    Hummler E
    Kidney Blood Press Res; 1998; 21(2-4):253-5. PubMed ID: 9762847
    [No Abstract]   [Full Text] [Related]  

  • 18. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome.
    Hansson JH; Nelson-Williams C; Suzuki H; Schild L; Shimkets R; Lu Y; Canessa C; Iwasaki T; Rossier B; Lifton RP
    Nat Genet; 1995 Sep; 11(1):76-82. PubMed ID: 7550319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Abnormalities of renal sodium transport and blood pressure sensitivity to salt].
    Burnier M
    Nephrol Ther; 2007 Sep; 3 Suppl 2():S94-8. PubMed ID: 17939973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Nedd4 proteins and serum and glucocorticoid-induced kinases on epithelial Na+ transport in the distal nephron.
    Staub O; Verrey F
    J Am Soc Nephrol; 2005 Nov; 16(11):3167-74. PubMed ID: 16192418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.