BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8887460)

  • 1. Refinement and verification of the physiologically based dosimetry description for acrylonitrile in rats.
    Kedderis GL; Teo SK; Batra R; Held SD; Gargas ML
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):422-35. PubMed ID: 8887460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A physiologically based dosimetry description of acrylonitrile and cyanoethylene oxide in the rat.
    Gargas ML; Andersen ME; Teo SK; Batra R; Fennell TR; Kedderis GL
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):185-94. PubMed ID: 7570594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans.
    Sweeney LM; Gargas ML; Strother DE; Kedderis GL
    Toxicol Sci; 2003 Jan; 71(1):27-40. PubMed ID: 12520073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugation of acrylonitrile and 2-cyanoethylene oxide with hepatic glutathione.
    Kedderis GL; Batra R; Turner MJ
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):9-17. PubMed ID: 7482544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of tissue partition coefficients for volatile tissue-reactive chemicals: acrylonitrile and its metabolite 2-cyanoethylene oxide.
    Teo SK; Kedderis GL; Gargas ML
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):92-6. PubMed ID: 8079360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rodent tissue distribution of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R; Held SD; Loos MA; Teo SK
    Toxicol Lett; 1993 Jul; 69(1):25-30. PubMed ID: 8356564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species comparison of acrylonitrile epoxidation by microsomes from mice, rats and humans: relationship to epoxide concentrations in mouse and rat blood.
    Roberts AE; Kedderis GL; Turner MJ; Rickert DE; Swenberg JA
    Carcinogenesis; 1991 Mar; 12(3):401-4. PubMed ID: 2009586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent urinary excretion of acrylonitrile metabolites by rats and mice.
    Kedderis GL; Sumner SC; Held SD; Batra R; Turner MJ; Roberts AE; Fennell TR
    Toxicol Appl Pharmacol; 1993 Jun; 120(2):288-97. PubMed ID: 8511799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of DNA Adducts and Mutagenic Potency and Specificity in Rats Exposed to Acrylonitrile.
    Walker VE; Fennell TR; Walker DM; Bauer MJ; Upton PB; Douglas GR; Swenberg JA
    Chem Res Toxicol; 2020 Jul; 33(7):1609-1622. PubMed ID: 32529823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epoxidation of acrylonitrile by rat and human cytochromes P450.
    Kedderis GL; Batra R; Koop DR
    Chem Res Toxicol; 1993; 6(6):866-71. PubMed ID: 8117926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R
    Carcinogenesis; 1993 Apr; 14(4):685-9. PubMed ID: 8472333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivation of noncancer reference values for acrylonitrile.
    Kirman CR; Sweeney LM; Gargas ML; Strother DE; Collins JJ; Deskin R
    Risk Anal; 2008 Oct; 28(5):1375-94. PubMed ID: 18761732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of oxidative stress in rat brain by acrylonitrile (ACN).
    Jiang J; Xu Y; Klaunig JE
    Toxicol Sci; 1998 Dec; 46(2):333-41. PubMed ID: 10048137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glutathione depletion on the uptake of acrylonitrile vapors and on its irreversible association with tissue macromolecules.
    Pilon D; Roberts AE; Rickert DE
    Toxicol Appl Pharmacol; 1988 Sep; 95(2):265-78. PubMed ID: 2458635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer dose--response assessment for acrylonitrile based upon rodent brain tumor incidence: use of epidemiologic, mechanistic, and pharmacokinetic support for nonlinearity.
    Kirman CR; Gargas ML; Marsh GM; Strother DE; Klaunig JE; Collins JJ; Deskin R
    Regul Toxicol Pharmacol; 2005 Oct; 43(1):85-103. PubMed ID: 16099568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Biomarkers of DNA Damage and Mutagenicity in Mice Exposed to Acrylonitrile.
    Walker VE; Walker DM; Ghanayem BI; Douglas GR
    Chem Res Toxicol; 2020 Jul; 33(7):1623-1632. PubMed ID: 32529832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood concentrations of acrylonitrile in humans after oral administration extrapolated from in vivo rat pharmacokinetics, in vitro human metabolism, and physiologically based pharmacokinetic modeling.
    Takano R; Murayama N; Horiuchi K; Kitajima M; Kumamoto M; Shono F; Yamazaki H
    Regul Toxicol Pharmacol; 2010 Nov; 58(2):252-8. PubMed ID: 20600458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and its metabolite, trichloroacetic acid.
    Fisher JW; Whittaker TA; Taylor DH; Clewell HJ; Andersen ME
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):395-414. PubMed ID: 2749729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue-specific genotoxic effects of acrylamide and acrylonitrile.
    Butterworth BE; Eldridge SR; Sprankle CS; Working PK; Bentley KS; Hurtt ME
    Environ Mol Mutagen; 1992; 20(3):148-55. PubMed ID: 1396605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of 8-oxodeoxyguanosine in brain DNA of rats exposed to acrylonitrile.
    Whysner J; Steward RE; Chen D; Conaway CC; Verna LK; Richie JP; Ali N; Williams GM
    Arch Toxicol; 1998 Jun; 72(7):429-38. PubMed ID: 9708882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.