These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 8887483)
1. Studies on the molecular basis for loss of the ability of recent influenza A (H1N1) virus strains to agglutinate chicken erythrocytes. Morishita T; Nobusawa E; Nakajima K; Nakajima S J Gen Virol; 1996 Oct; 77 ( Pt 10)():2499-506. PubMed ID: 8887483 [TBL] [Abstract][Full Text] [Related]
2. M protein correlates with the receptor-binding specificity of haemagglutinin protein of reassortant influenza A (H1N1) virus. Tong N; Nobusawa E; Morishita M; Nakajima S; Nakajima K J Gen Virol; 1998 Oct; 79 ( Pt 10)():2425-34. PubMed ID: 9780048 [TBL] [Abstract][Full Text] [Related]
3. Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides. Nobusawa E; Ishihara H; Morishita T; Sato K; Nakajima K Virology; 2000 Dec; 278(2):587-96. PubMed ID: 11118381 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the host-specific haemagglutination of influenza A(H1N1) viruses isolated in the 1995/6 season. Morishita T; Nobusawa E; Luo S; Sato K; Nakajima S; Nakajima K Epidemiol Infect; 1997 Dec; 119(3):327-34. PubMed ID: 9440436 [TBL] [Abstract][Full Text] [Related]
5. Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Medeiros R; Escriou N; Naffakh N; Manuguerra JC; van der Werf S Virology; 2001 Oct; 289(1):74-85. PubMed ID: 11601919 [TBL] [Abstract][Full Text] [Related]
6. Receptor binding specificity of recent human H3N2 influenza viruses. Kumari K; Gulati S; Smith DF; Gulati U; Cummings RD; Air GM Virol J; 2007 May; 4():42. PubMed ID: 17490484 [TBL] [Abstract][Full Text] [Related]
7. Variation in response among individuals to antigenic sites on the HA protein of human influenza virus may be responsible for the emergence of drift strains in the human population. Nakajima S; Nobusawa E; Nakajima K Virology; 2000 Aug; 274(1):220-31. PubMed ID: 10936103 [TBL] [Abstract][Full Text] [Related]
8. Isolation of the pandemic (H1N1) 2009 virus and its reassortant with an H3N2 swine influenza virus from healthy weaning pigs in Thailand in 2011. Hiromoto Y; Parchariyanon S; Ketusing N; Netrabukkana P; Hayashi T; Kobayashi T; Takemae N; Saito T Virus Res; 2012 Oct; 169(1):175-81. PubMed ID: 22906589 [TBL] [Abstract][Full Text] [Related]
9. Reassortment and modification of hemagglutinin cleavage motif of avian/WSN influenza viruses generated by reverse genetics that correlate with attenuation. Lu JH; Long JX; Jia LJ; Liu YL; Shao WX; Zhang YM; Liu XF Acta Virol; 2006; 50(4):243-9. PubMed ID: 17177609 [TBL] [Abstract][Full Text] [Related]
10. Epitope changes on the haemagglutinin molecule of recently isolated H1N1 influenza viruses. Yamada A; Nobusawa E; Cao MS; Imanishi J; Oyama S; Abe A; Katagiri S; Kim DW; Nakajima K; Nakajima S J Gen Virol; 1991 Jan; 72 ( Pt 1)():97-102. PubMed ID: 1703564 [TBL] [Abstract][Full Text] [Related]
12. The impact of key amino acid substitutions in the hemagglutinin of influenza A (H3N2) viruses on vaccine production and antibody response. Chen Z; Zhou H; Jin H Vaccine; 2010 May; 28(24):4079-85. PubMed ID: 20399830 [TBL] [Abstract][Full Text] [Related]
13. Antigenic and genetic analyses of H1N1 influenza A viruses from European pigs. Brown IH; Ludwig S; Olsen CW; Hannoun C; Scholtissek C; Hinshaw VS; Harris PA; McCauley JW; Strong I; Alexander DJ J Gen Virol; 1997 Mar; 78 ( Pt 3)():553-62. PubMed ID: 9049404 [TBL] [Abstract][Full Text] [Related]
14. Improvement of H5N1 influenza vaccine viruses: influence of internal gene segments of avian and human origin on production and hemagglutinin content. Abt M; de Jonge J; Laue M; Wolff T Vaccine; 2011 Jul; 29(32):5153-62. PubMed ID: 21624413 [TBL] [Abstract][Full Text] [Related]
15. Alterations in receptor-binding properties of swine influenza viruses of the H1 subtype after isolation in embryonated chicken eggs. Takemae N; Ruttanapumma R; Parchariyanon S; Yoneyama S; Hayashi T; Hiramatsu H; Sriwilaijaroen N; Uchida Y; Kondo S; Yagi H; Kato K; Suzuki Y; Saito T J Gen Virol; 2010 Apr; 91(Pt 4):938-48. PubMed ID: 20007353 [TBL] [Abstract][Full Text] [Related]
16. Reactivity of human convalescent sera with influenza virus hemagglutinin protein mutants at antigenic site A. Nobusawa E; Omagari K; Nakajima S; Nakajima K Microbiol Immunol; 2012 Feb; 56(2):99-106. PubMed ID: 22309642 [TBL] [Abstract][Full Text] [Related]
17. [Comparison of sequences of the hemagglutinin gene and phylogenetical analysis of H9 subtype avian influenza viruses isolated from some regions in China]. Liu H; Cheng J; Peng D; Jia L; Zhang R; Liu X Wei Sheng Wu Xue Bao; 2002 Jun; 42(3):288-97. PubMed ID: 12557368 [TBL] [Abstract][Full Text] [Related]
18. Effect of gene constellation and postreassortment amino acid change on the phenotypic features of H5 influenza virus reassortants. Rudneva IA; Timofeeva TA; Shilov AA; Kochergin-Nikitsky KS; Varich NL; Ilyushina NA; Gambaryan AS; Krylov PS; Kaverin NV Arch Virol; 2007; 152(6):1139-45. PubMed ID: 17294090 [TBL] [Abstract][Full Text] [Related]
19. Aptamers that bind to the hemagglutinin of the recent pandemic influenza virus H1N1 and efficiently inhibit agglutination. Gopinath SC; Kumar PK Acta Biomater; 2013 Nov; 9(11):8932-41. PubMed ID: 23791676 [TBL] [Abstract][Full Text] [Related]
20. Erythrocyte binding preference of 16 subtypes of low pathogenic avian influenza and 2009 pandemic influenza A (H1N1) viruses. Wiriyarat W; Lerdsamran H; Pooruk P; Webster RG; Louisirirotchanakul S; Ratanakorn P; Chaichoune K; Nateerom K; Puthavathana P Vet Microbiol; 2010 Dec; 146(3-4):346-9. PubMed ID: 20579820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]