These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8887513)

  • 1. Shielding design of a treatment room for an accelerator-based epithermal neutron irradiation facility for BNCT.
    Evans JF; Blue TE
    Health Phys; 1996 Nov; 71(5):692-9. PubMed ID: 8887513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A shielding design for an accelerator-based neutron source for boron neutron capture therapy.
    Hawk AE; Blue TE; Woollard JE
    Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation safety analysis for the A-BNCT facility in Korea.
    Lee E; Lee CW; Cho G
    Appl Radiat Isot; 2018 Dec; 142():92-103. PubMed ID: 30273764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shielding design and dose assessment for accelerator based neutron capture therapy.
    Howard WB; Yanch JC
    Health Phys; 1995 May; 68(5):723-30. PubMed ID: 7730072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a BNCT irradiation room based on proton accelerator and beryllium target.
    Magni C; Postuma I; Ferrarini M; Protti N; Fatemi S; Gong C; Anselmi-Tamburini U; Vercesi V; Battistoni G; Altieri S; Bortolussi S
    Appl Radiat Isot; 2020 Nov; 165():109314. PubMed ID: 32768928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Project for the development of the linac based NCT facility in University of Tsukuba.
    Kumada H; Matsumura A; Sakurai H; Sakae T; Yoshioka M; Kobayashi H; Matsumoto H; Kiyanagi Y; Shibata T; Nakashima H
    Appl Radiat Isot; 2014 Jun; 88():211-5. PubMed ID: 24637084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of head phantom size on 10B and 1H[n,gamma]2H dose distributions for a broad field accelerator epithermal neutron source for BNCT.
    Gupta N; Niemkiewicz J; Blue TE; Gahbauer R; Qu TX
    Med Phys; 1993; 20(2 Pt 1):395-404. PubMed ID: 8497231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor.
    Gritzay OO; Kalchenko OI; Klimova NA; Razbudey VF; Sanzhur AI; Binney SE
    Appl Radiat Isot; 2004 Nov; 61(5):869-73. PubMed ID: 15308160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data.
    Zamenhof R; Redmond E; Solares G; Katz D; Riley K; Kiger S; Harling O
    Int J Radiat Oncol Biol Phys; 1996 May; 35(2):383-97. PubMed ID: 8635948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shielding design studies for a neutron irradiator system based on a 252Cf source.
    da Silva AX; Crispim VR
    Radiat Prot Dosimetry; 2001; 95(4):333-8. PubMed ID: 11707031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the neutron beam line shield design for JSNS.
    Kawai M; Saito K; Sanami T; Nakao N; Maekawa F
    Radiat Prot Dosimetry; 2005; 115(1-4):580-6. PubMed ID: 16381789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.
    Kotiluoto P; Auterinen I
    Appl Radiat Isot; 2004 Nov; 61(5):781-5. PubMed ID: 15308144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation shielding evaluation of the BNCT treatment room at THOR: a TORT-coupled MCNP Monte Carlo simulation study.
    Chen AY; Liu YW; Sheu RJ
    Appl Radiat Isot; 2008 Jan; 66(1):28-38. PubMed ID: 17825572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center.
    Kato T; Hirose K; Tanaka H; Mitsumoto T; Motoyanagi T; Arai K; Harada T; Takeuchi A; Kato R; Yajima S; Takai Y
    Appl Radiat Isot; 2020 Feb; 156():108961. PubMed ID: 31683088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT.
    Wang CK; Blue TE; Blue JW
    Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.