These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 8887631)

  • 21. Structure and functional analysis of the 26S proteasome subunits from plants.
    Fu H; Girod PA; Doelling JH; van Nocker S; Hochstrasser M; Finley D; Vierstra RD
    Mol Biol Rep; 1999 Apr; 26(1-2):137-46. PubMed ID: 10363660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.
    Hampton RY; Gardner RG; Rine J
    Mol Biol Cell; 1996 Dec; 7(12):2029-44. PubMed ID: 8970163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cloning and characterization of Pros45, the Drosophila SUG1 proteasome subunit homolog.
    Cheng L; Roemer N; Smyth KA; Belote J; Nambu JR; Schwartz LM
    Mol Gen Genet; 1998 Jul; 259(1):13-20. PubMed ID: 9738875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination.
    Spence J; Sadis S; Haas AL; Finley D
    Mol Cell Biol; 1995 Mar; 15(3):1265-73. PubMed ID: 7862120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome.
    Cagney G; Uetz P; Fields S
    Physiol Genomics; 2001 Oct; 7(1):27-34. PubMed ID: 11595789
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of the gal4 suppressor Sug1 as a subunit of the yeast 26S proteasome.
    Rubin DM; Coux O; Wefes I; Hengartner C; Young RA; Goldberg AL; Finley D
    Nature; 1996 Feb; 379(6566):655-7. PubMed ID: 8628401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cic1, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4.
    Jäger S; Strayle J; Heinemeyer W; Wolf DH
    EMBO J; 2001 Aug; 20(16):4423-31. PubMed ID: 11500370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mapping the ubiquitin-binding domains in the p54 regulatory complex subunit of the Drosophila 26S protease.
    Haracska L; Udvardy A
    FEBS Lett; 1997 Jul; 412(2):331-6. PubMed ID: 9256246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular cloning and expression of subunit 9 of the 26S proteasome.
    Hoffman L; Rechsteiner M
    FEBS Lett; 1997 Mar; 404(2-3):179-84. PubMed ID: 9119060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural substrates of the proteasome and their recognition by the ubiquitin system.
    Ulrich HD
    Curr Top Microbiol Immunol; 2002; 268():137-74. PubMed ID: 12083004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae?
    Murray BP; Correia MA
    Arch Biochem Biophys; 2001 Sep; 393(1):106-16. PubMed ID: 11516167
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1.
    Holm M; Hardtke CS; Gaudet R; Deng XW
    EMBO J; 2001 Jan; 20(1-2):118-27. PubMed ID: 11226162
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knocking out ubiquitin proteasome system function in vivo and in vitro with genetically encodable tandem ubiquitin.
    Saeki Y; Isono E; Shimada M; Kawahara H; Yokosawa H; Toh-E A
    Methods Enzymol; 2005; 399():64-74. PubMed ID: 16338349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ubiquitin binding proteins protect ubiquitin conjugates from disassembly.
    Hartmann-Petersen R; Hendil KB; Gordon C
    FEBS Lett; 2003 Jan; 535(1-3):77-81. PubMed ID: 12560082
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo.
    DeMarini DJ; Papa FR; Swaminathan S; Ursic D; Rasmussen TP; Culbertson MR; Hochstrasser M
    Mol Cell Biol; 1995 Nov; 15(11):6311-21. PubMed ID: 7565784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu.
    Gonen H; Smith CE; Siegel NR; Kahana C; Merrick WC; Chakraburtty K; Schwartz AL; Ciechanover A
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7648-52. PubMed ID: 8052636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis.
    Saeki Y; Saitoh A; Toh-e A; Yokosawa H
    Biochem Biophys Res Commun; 2002 May; 293(3):986-92. PubMed ID: 12051757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The hydrophobic effect contributes to polyubiquitin chain recognition.
    Beal RE; Toscano-Cantaffa D; Young P; Rechsteiner M; Pickart CM
    Biochemistry; 1998 Mar; 37(9):2925-34. PubMed ID: 9485444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase.
    Ghislain M; Udvardy A; Mann C
    Nature; 1993 Nov; 366(6453):358-62. PubMed ID: 8247132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.