BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8887891)

  • 21. Self-motion perception during conflicting visual-vestibular acceleration.
    Ishida M; Fushiki H; Nishida H; Watanabe Y
    J Vestib Res; 2008; 18(5-6):267-72. PubMed ID: 19542600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of the visual and vestibular cortex for self-motion perception in man (circularvection).
    Straube A; Brandt T
    Hum Neurobiol; 1987; 6(3):211-8. PubMed ID: 3449488
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Up-down asymmetry in vertical vection.
    Seya Y; Shinoda H; Nakaura Y
    Vision Res; 2015 Dec; 117():16-24. PubMed ID: 26518744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drinking milk or water has no effect on the severity of optokinetic rotation-induced symptoms of motion sickness.
    Hu S; Lagomarsino JJ; Luo YJ
    Aviat Space Environ Med; 1998 Dec; 69(12):1158-61. PubMed ID: 9856539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optokinetic circular vection: a test of visual-vestibular conflict models of vection nascensy.
    Jürgens R; Kliegl K; Kassubek J; Becker W
    Exp Brain Res; 2016 Jan; 234(1):67-81. PubMed ID: 26358128
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation to vection-induced symptoms of motion sickness.
    Stern RM; Hu SQ; Vasey MW; Koch KL
    Aviat Space Environ Med; 1989 Jun; 60(6):566-72. PubMed ID: 2751587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vestibular, optokinetic, and cognitive contribution to the guidance of passive self-rotation toward instructed targets.
    Jürgens R; Nasios G; Becker W
    Exp Brain Res; 2003 Jul; 151(1):90-107. PubMed ID: 12740727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. More vection means more velocity storage activity: a factor in visually induced motion sickness?
    Nooij SAE; Pretto P; Bülthoff HH
    Exp Brain Res; 2018 Nov; 236(11):3031-3041. PubMed ID: 30120498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum.
    Hu S; McChesney KA; Player KA; Bahl AM; Buchanan JB; Scozzafava JE
    Aviat Space Environ Med; 1999 Aug; 70(8):759-65. PubMed ID: 10447048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum.
    Hu S; Stern RM; Vasey MW; Koch KL
    Aviat Space Environ Med; 1989 May; 60(5):411-4. PubMed ID: 2730483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optokinetic and vection responses to apparent motion in man.
    Schor CM; Lakshminarayanan V; Narayan V
    Vision Res; 1984; 24(10):1181-7. PubMed ID: 6523741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum.
    Hu S; Grant WF; Stern RM; Koch KL
    Aviat Space Environ Med; 1991 Apr; 62(4):308-14. PubMed ID: 2031631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of fixation and restricted visual field on vection-induced motion sickness.
    Stern RM; Hu S; Anderson RB; Leibowitz HW; Koch KL
    Aviat Space Environ Med; 1990 Aug; 61(8):712-5. PubMed ID: 2400374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of tilted stripes in an optokinetic drum on gastric myoelectric activity and subjective reports of motion sickness.
    Andre JT; Muth ER; Stern RM; Leibowitz HW
    Aviat Space Environ Med; 1996 Jan; 67(1):30-3. PubMed ID: 8929199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gender differences in motion sickness history and susceptibility to optokinetic rotation-induced motion sickness.
    Park AH; Hu S
    Aviat Space Environ Med; 1999 Nov; 70(11):1077-80. PubMed ID: 10608604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Motion sickness susceptibility to optokinetic rotation correlates to past history of motion sickness.
    Hu S; Glaser KM; Hoffman TS; Stanton TM; Gruber MB
    Aviat Space Environ Med; 1996 Apr; 67(4):320-4. PubMed ID: 8900982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of scopolamine and cyclizine on visual-vestibular interaction in humans.
    Gowans J; Matheson A; Darlington CL; Smith PF
    J Vestib Res; 2000; 10(2):87-92. PubMed ID: 10939683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rotation direction change hastens motion sickness onset in an optokinetic drum.
    Bonato F; Bubka A; Story M
    Aviat Space Environ Med; 2005 Sep; 76(9):823-7. PubMed ID: 16173677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories.
    Nooij SA; Pretto P; Oberfeld D; Hecht H; Bülthoff HH
    PLoS One; 2017; 12(4):e0175305. PubMed ID: 28380077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of spatial arrangement of visual stimulus on inverted self-motion perception induced by the foreground motion: examination of OKN-suppression hypothesis.
    Nakamura S
    Vision Res; 2004; 44(16):1951-60. PubMed ID: 15145688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.