BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 8887943)

  • 1. Astrocytoma and Schwann cells in coculture.
    Lal PG; Ghirnikar RS; Eng LF
    Mol Chem Neuropathol; 1996 Sep; 29(1):93-104. PubMed ID: 8887943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity.
    Rutka JT; Smith SL
    Cancer Res; 1993 Aug; 53(15):3624-31. PubMed ID: 8339269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficial reciprocal effects of bone marrow stromal cells and Schwann cells from adult rats in a dynamic co‑culture system in vitro without intercellular contact.
    Zhou LN; Cui XJ; Su KX; Wang XH; Guo JH
    Mol Med Rep; 2015 Oct; 12(4):4931-8. PubMed ID: 26133460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reexpression of glial fibrillary acidic protein rescues the ability of astrocytoma cells to form processes in response to neurons.
    Chen WJ; Liem RK
    J Cell Biol; 1994 Nov; 127(3):813-23. PubMed ID: 7962062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection.
    Toda M; Miura M; Asou H; Toya S; Uyemura K
    J Neurochem; 1994 Nov; 63(5):1975-8. PubMed ID: 7931355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Astrocyte-astrocytoma cell line interactions in culture.
    Lal PG; Ghirnikar RS; Eng LF
    J Neurosci Res; 1996 May; 44(3):216-22. PubMed ID: 8723760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astrocyte-Schwann cell interactions in culture.
    Ghirnikar RS; Eng LF
    Glia; 1994 Aug; 11(4):367-77. PubMed ID: 7960039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.
    Weinstein DE; Shelanski ML; Liem RK
    J Cell Biol; 1991 Mar; 112(6):1205-13. PubMed ID: 1999469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density.
    Pekny M; Eliasson C; Chien CL; Kindblom LG; Liem R; Hamberger A; Betsholtz C
    Exp Cell Res; 1998 Mar; 239(2):332-43. PubMed ID: 9521851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-expression of glial fibrillary acidic protein- and vimentin-type intermediate filaments in human astrocytomas.
    Herpers MJ; Ramaekers FC; Aldeweireldt J; Moesker O; Slooff J
    Acta Neuropathol; 1986; 70(3-4):333-9. PubMed ID: 3020864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells.
    Rutka JT; Hubbard SL; Fukuyama K; Matsuzawa K; Dirks PB; Becker LE
    Cancer Res; 1994 Jun; 54(12):3267-72. PubMed ID: 8205549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Immunohistochemical study in astrocytoma].
    Luo XM
    Zhonghua Bing Li Xue Za Zhi; 1993 Apr; 22(2):95-7. PubMed ID: 8403105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinoic acid and the cyclin dependent kinase inhibitors synergistically alter proliferation and morphology of U343 astrocytoma cells.
    Dirks PB; Patel K; Hubbard SL; Ackerley C; Hamel PA; Rutka JT
    Oncogene; 1997 Oct; 15(17):2037-48. PubMed ID: 9366521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of glial filament-cytoskeletal interactions in human astrocytomas: an immuno-ultrastructural analysis.
    Rutka JT; Ackerley C; Hubbard SL; Tilup A; Dirks PB; Jung S; Ivanchuk S; Kurimoto M; Tsugu A; Becker LE
    Eur J Cell Biol; 1998 Aug; 76(4):279-87. PubMed ID: 9765058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional regulation of glial fibrillary acidic protein by corticosterone in rat astrocytes in vitro is influenced by the duration of time in culture and by astrocyte-neuron interactions.
    Rozovsky I; Laping NJ; Krohn K; Teter B; O'Callaghan JP; Finch CE
    Endocrinology; 1995 May; 136(5):2066-73. PubMed ID: 7720656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colocalization of three types of intermediate filament proteins in perisinusoidal stellate cells: glial fibrillary acidic protein as a new cellular marker.
    Buniatian G; Gebhardt R; Schrenk D; Hamprecht B
    Eur J Cell Biol; 1996 May; 70(1):23-32. PubMed ID: 8738416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immuno-electron microscopical localization of vimentin and glial fibrillary acidic protein in mouse astrocytes and their precursor cells in culture.
    Abd-el-Basset EM; Ahmed I; Kalnins VI; Fedoroff S
    Glia; 1992; 6(2):149-53. PubMed ID: 1398896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneously immortalized Schwann cells from adult Fischer rat as a valuable tool for exploring neuron-Schwann cell interactions.
    Sango K; Yanagisawa H; Kawakami E; Takaku S; Ajiki K; Watabe K
    J Neurosci Res; 2011 Jun; 89(6):898-908. PubMed ID: 21394758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of inflammation on glial fibrillary acidic protein expression in satellite cells of the dorsal root ganglion.
    Siemionow K; Klimczak A; Brzezicki G; Siemionow M; McLain RF
    Spine (Phila Pa 1976); 2009 Jul; 34(16):1631-7. PubMed ID: 19770604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells.
    Feinstein DL; Weinmaster GA; Milner RJ
    J Neurosci Res; 1992 May; 32(1):1-14. PubMed ID: 1629938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.