These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Changes in quinolinic acid production and its related enzymes following D-galactosamine and lipopolysaccharide-induced hepatic injury. Ohashi H; Saito K; Fujii H; Wada H; Furuta N; Takemura M; Maeda S; Seishima M Arch Biochem Biophys; 2004 Aug; 428(2):154-9. PubMed ID: 15246871 [TBL] [Abstract][Full Text] [Related]
23. Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: results of an in vivo microdialysis study. Rao VL; Audet RM; Butterworth RF J Neurochem; 1995 Sep; 65(3):1221-8. PubMed ID: 7643101 [TBL] [Abstract][Full Text] [Related]
24. Cerebrospinal fluid glutamine, tryptophan, and tryptophan metabolite concentrations in dogs with portosystemic shunts. Holt DE; Washabau RJ; Djali S; Dayrell-Hart B; Drobatz KJ; Heyes MP; Robinson MB Am J Vet Res; 2002 Aug; 63(8):1167-71. PubMed ID: 12171172 [TBL] [Abstract][Full Text] [Related]
25. Dynamic and kinetic effects of chronic citalopram treatment in experimental hepatic encephalopathy. Apelqvist G; Wikell C; Carlsson B; Hjorth S; Bergqvist PB; Ahlner J; Bengtsson F Clin Neuropharmacol; 2000; 23(6):304-17. PubMed ID: 11575864 [TBL] [Abstract][Full Text] [Related]
26. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure. Moroni F; Lombardi G; Carlà V; Lal S; Etienne P; Nair NP J Neurochem; 1986 Dec; 47(6):1667-71. PubMed ID: 2430055 [TBL] [Abstract][Full Text] [Related]
27. Quinolinic acid accumulation during neuroinflammation. Does it imply excitotoxicity? Obrenovitch TP Ann N Y Acad Sci; 2001 Jun; 939():1-10. PubMed ID: 11462760 [TBL] [Abstract][Full Text] [Related]
28. Neuroactive amino acids and glutamate (NMDA) receptors in frontal cortex of rats with experimental acute liver failure. Michalak A; Rose C; Butterworth J; Butterworth RF Hepatology; 1996 Oct; 24(4):908-13. PubMed ID: 8855196 [TBL] [Abstract][Full Text] [Related]
29. Alterations in extracellular tryptophan and dopamine concentrations in rat striatum following peripheral administration of D- and L-tryptophan: an in vivo microdialysis study. Yoshihara S; Otani H; Tsunoda M; Ishii K; Iizuka H; Ichiba H; Fukushima T Neurosci Lett; 2012 Sep; 526(1):74-8. PubMed ID: 22884931 [TBL] [Abstract][Full Text] [Related]
30. Effects of memantine, an N-methyl-D-aspartate receptor antagonist, on fatigue and neuronal brain damage in a rat model of combined (physical and mental) fatigue. Morimoto Y; Zhang Q; Adachi K Biol Pharm Bull; 2012; 35(4):481-6. PubMed ID: 22466550 [TBL] [Abstract][Full Text] [Related]
31. On the production and disposition of quinolinic acid in rat brain and liver slices. Speciale C; Schwarcz R J Neurochem; 1993 Jan; 60(1):212-8. PubMed ID: 8417142 [TBL] [Abstract][Full Text] [Related]
32. Neurotoxin quinolinic acid is selectively elevated in spinal cords of rats with experimental allergic encephalomyelitis. Flanagan EM; Erickson JB; Viveros OH; Chang SY; Reinhard JF J Neurochem; 1995 Mar; 64(3):1192-6. PubMed ID: 7861150 [TBL] [Abstract][Full Text] [Related]
33. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats. Vogels BA; Maas MA; Daalhuisen J; Quack G; Chamuleau RA Hepatology; 1997 Apr; 25(4):820-7. PubMed ID: 9096582 [TBL] [Abstract][Full Text] [Related]
34. 2-Aminonicotinic acid 1-oxides are chemically stable inhibitors of quinolinic acid synthesis in the mammalian brain: a step toward new antiexcitotoxic agents. Vallerini GP; Amori L; Beato C; Tararina M; Wang XD; Schwarcz R; Costantino G J Med Chem; 2013 Dec; 56(23):9482-95. PubMed ID: 24274468 [TBL] [Abstract][Full Text] [Related]
35. Disposition of venlafaxine enantiomers in rats with hepatic encephalopathy after chronic drug treatment. Wikell C; Eap CB; Josefsson M; Apelqvist G; Ahlner J; Baumann P; Bengtsson F Chirality; 2002 May; 14(4):347-50. PubMed ID: 11968077 [TBL] [Abstract][Full Text] [Related]
36. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats. Braidy N; Guillemin GJ; Mansour H; Chan-Ling T; Grant R FEBS J; 2011 Nov; 278(22):4425-34. PubMed ID: 22032336 [TBL] [Abstract][Full Text] [Related]
37. Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: a possible link between chronic inflammation and uraemic symptoms. Schefold JC; Zeden JP; Fotopoulou C; von Haehling S; Pschowski R; Hasper D; Volk HD; Schuett C; Reinke P Nephrol Dial Transplant; 2009 Jun; 24(6):1901-8. PubMed ID: 19155537 [TBL] [Abstract][Full Text] [Related]
38. Essential role of excessive tryptophan and its neurometabolites in fatigue. Yamamoto T; Azechi H; Board M Can J Neurol Sci; 2012 Jan; 39(1):40-7. PubMed ID: 22384494 [TBL] [Abstract][Full Text] [Related]
39. Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of L-carnitine. Silva-Adaya D; Pérez-De La Cruz V; Herrera-Mundo MN; Mendoza-Macedo K; Villeda-Hernández J; Binienda Z; Ali SF; Santamaría A J Neurochem; 2008 May; 105(3):677-89. PubMed ID: 18194214 [TBL] [Abstract][Full Text] [Related]
40. Quinolinic acid-immunoreactivity in the naïve mouse brain. Lopez YP; Kenis G; Rutten BP; Myint AM; Steinbusch HW; van den Hove DL J Chem Neuroanat; 2016 Jan; 71():6-12. PubMed ID: 26686288 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]