These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 8888142)
1. Free energy perturbation studies on binding of A-74704 and its diester analog to HIV-1 protease. Rao BG; Murcko MA Protein Eng; 1996 Sep; 9(9):767-71. PubMed ID: 8888142 [TBL] [Abstract][Full Text] [Related]
2. Estimates of relative binding free energies for HIV protease inhibitors using different levels of approximations. Lee CY; Yang PK; Tzou WS; Hwang MJ Protein Eng; 1998 Jun; 11(6):429-37. PubMed ID: 9725621 [TBL] [Abstract][Full Text] [Related]
3. 4-hydroxy-5,6-dihydro-2H-pyran-2-ones.3. Bicyclic and hetero-aromatic ring systems as 3-position scaffolds to bind to S1' and S2' of the HIV-1 protease enzyme. Ellsworth EL; Domagala J; Prasad JV; Hagen S; Ferguson D; Holler T; Hupe D; Graham N; Nouhan C; Tummino PJ; Zeikus G; Lunney EA Bioorg Med Chem Lett; 1999 Jul; 9(14):2019-24. PubMed ID: 10450973 [TBL] [Abstract][Full Text] [Related]
4. Energy calculations and analysis of HIV-1 protease-inhibitor crystal structures. Gustchina A; Sansom C; Prevost M; Richelle J; Wodak SY; Wlodawer A; Weber IT Protein Eng; 1994 Mar; 7(3):309-17. PubMed ID: 8177879 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of human immunodeficiency virus-1 protease by a C2-symmetric phosphinate. Synthesis and crystallographic analysis. Abdel-Meguid SS; Zhao B; Murthy KH; Winborne E; Choi JK; DesJarlais RL; Minnich MD; Culp JS; Debouck C; Tomaszek TA Biochemistry; 1993 Aug; 32(31):7972-80. PubMed ID: 8347601 [TBL] [Abstract][Full Text] [Related]
6. Structure of HOE/BAY 793 complexed to human immunodeficiency virus (HIV-1) protease in two different crystal forms--structure/function relationship and influence of crystal packing. Lange-Savage G; Berchtold H; Liesum A; Budt KH; Peyman A; Knolle J; Sedlacek J; Fabry M; Hilgenfeld R Eur J Biochem; 1997 Sep; 248(2):313-22. PubMed ID: 9346283 [TBL] [Abstract][Full Text] [Related]
7. A preference-based free-energy parameterization of enzyme-inhibitor binding. Applications to HIV-1-protease inhibitor design. Wallqvist A; Jernigan RL; Covell DG Protein Sci; 1995 Sep; 4(9):1881-903. PubMed ID: 8528086 [TBL] [Abstract][Full Text] [Related]
8. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G; Steinbrecher T; Papadopoulos MG J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142 [TBL] [Abstract][Full Text] [Related]
9. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights. Chetty S; Bhakat S; Martin AJ; Soliman ME J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669 [TBL] [Abstract][Full Text] [Related]
10. Relative binding free energies of peptide inhibitors of HIV-1 protease: the influence of the active site protonation state. Chen X; Tropsha A J Med Chem; 1995 Jan; 38(1):42-8. PubMed ID: 7837238 [TBL] [Abstract][Full Text] [Related]
11. Calculation of relative differences in the binding free energies of HIV1 protease inhibitors: a thermodynamic cycle perturbation approach. Reddy MR; Varney MD; Kalish V; Viswanadhan VN; Appelt K J Med Chem; 1994 Apr; 37(8):1145-52. PubMed ID: 8164256 [TBL] [Abstract][Full Text] [Related]
12. Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Hansson T; Aqvist J Protein Eng; 1995 Nov; 8(11):1137-44. PubMed ID: 8819979 [TBL] [Abstract][Full Text] [Related]
14. Symmetric fluoro-substituted diol-based HIV protease inhibitors. Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy. Lindberg J; Pyring D; Löwgren S; Rosenquist A; Zuccarello G; Kvarnström I; Zhang H; Vrang L; Classon B; Hallberg A; Samuelsson B; Unge T Eur J Biochem; 2004 Nov; 271(22):4594-602. PubMed ID: 15560801 [TBL] [Abstract][Full Text] [Related]
15. Design, synthesis and biological evaluation of HIV-1 protease inhibitors with morpholine derivatives as P2 ligands in combination with cyclopropyl as P1' ligand. Dou Y; Zhu M; Dong B; Wang JX; Zhang GN; Zhang F; Wang YC Bioorg Med Chem Lett; 2020 Apr; 30(7):127019. PubMed ID: 32057582 [TBL] [Abstract][Full Text] [Related]
17. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis. Karnati KR; Wang Y J Mol Graph Model; 2019 Nov; 92():112-122. PubMed ID: 31351319 [TBL] [Abstract][Full Text] [Related]
18. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M; Kríz Z; Havlas Z Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915 [TBL] [Abstract][Full Text] [Related]
19. Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. Bäckbro K; Löwgren S; Osterlund K; Atepo J; Unge T; Hultén J; Bonham NM; Schaal W; Karlén A; Hallberg A J Med Chem; 1997 Mar; 40(6):898-902. PubMed ID: 9083478 [TBL] [Abstract][Full Text] [Related]
20. Molecular mechanics analysis of inhibitor binding to HIV-1 protease. Sansom CE; Wu J; Weber IT Protein Eng; 1992 Oct; 5(7):659-67. PubMed ID: 1480620 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]