BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8888145)

  • 21. Glyceride synthesis by four kinds of microbial lipase.
    Tsujisaka Y; Okumura S; Iwai M
    Biochim Biophys Acta; 1977 Dec; 489(3):415-22. PubMed ID: 563245
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of a thermo-alkali-stable lipase from Rhizopus chinensis by rational design of a buried disulfide bond and combinatorial mutagenesis.
    Wang R; Wang S; Xu Y; Yu X
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1019-1030. PubMed ID: 33070231
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study.
    Nini L; Sarda L; Comeau LC; Boitard E; Dubès JP; Chahinian H
    Biochim Biophys Acta; 2001 Nov; 1534(1):34-44. PubMed ID: 11750885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Essential dynamics of lipase binding sites: the effect of inhibitors of different chain length.
    Peters GH; van Aalten DM; Svendsen A; Bywater R
    Protein Eng; 1997 Feb; 10(2):149-58. PubMed ID: 9089814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alteration of Chain-Length Selectivity and Thermostability of
    Huang J; Dai S; Chen X; Xu L; Yan J; Yang M; Yan Y
    Appl Environ Microbiol; 2023 Jan; 89(1):e0187822. PubMed ID: 36602359
    [No Abstract]   [Full Text] [Related]  

  • 27. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].
    Khasanov KhT; Davranov K; Rakhimov MM
    Prikl Biokhim Mikrobiol; 2015; 51(5):511-9. PubMed ID: 26596088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformational lability of lipases observed in the absence of an oil-water interface: crystallographic studies of enzymes from the fungi Humicola lanuginosa and Rhizopus delemar.
    Derewenda U; Swenson L; Wei Y; Green R; Kobos PM; Joerger R; Haas MJ; Derewenda ZS
    J Lipid Res; 1994 Mar; 35(3):524-34. PubMed ID: 8014587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unusual buried polar cluster in a family of fungal lipases.
    Derewenda U; Swenson L; Green R; Wei Y; Dodson GG; Yamaguchi S; Haas MJ; Derewenda ZS
    Nat Struct Biol; 1994 Jan; 1(1):36-47. PubMed ID: 7656005
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning of an alkaline lipase gene from Penicillium cyclopium and its expression in Escherichia coli.
    Wu M; Qian Z; Jiang P; Min T; Sun C; Huang W
    Lipids; 2003 Mar; 38(3):191-9. PubMed ID: 12784858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical properties of a new cold-active mono- and diacylglycerol lipase from marine member Janibacter sp. strain HTCC2649.
    Yuan D; Lan D; Xin R; Yang B; Wang Y
    Int J Mol Sci; 2014 Jun; 15(6):10554-66. PubMed ID: 24927145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase.
    Brzozowski AM; Savage H; Verma CS; Turkenburg JP; Lawson DM; Svendsen A; Patkar S
    Biochemistry; 2000 Dec; 39(49):15071-82. PubMed ID: 11106485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Purification and characterization of an extracellular lipase from Penicillium candidum.
    Ruiz B; Farrés A; Langley E; Masso F; Sánchez S
    Lipids; 2001 Mar; 36(3):283-9. PubMed ID: 11337984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disulfide Bond Engineering of an Endoglucanase from
    Bashirova A; Pramanik S; Volkov P; Rozhkova A; Nemashkalov V; Zorov I; Gusakov A; Sinitsyn A; Schwaneberg U; Davari MD
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30935060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel S-enantioselective lipase TALipB from Trichosporon asahii MSR54: Heterologous expression, characterization, conformational stability and homology modeling.
    Singh Y; Gupta R
    Enzyme Microb Technol; 2016 Feb; 83():29-39. PubMed ID: 26777248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.
    Holmquist M; Martinelle M; Berglund P; Clausen IG; Patkar S; Svendsen A; Hult K
    J Protein Chem; 1993 Dec; 12(6):749-57. PubMed ID: 8136025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallization and characterization of monoacylglycerol and diacylglycerol lipase from Penicillium camembertii.
    Isobe K; Nokihara K; Yamaguchi S; Mase T; Schmid RD
    Eur J Biochem; 1992 Jan; 203(1-2):233-7. PubMed ID: 1730229
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the Catalytic Activity and Thermostability of MAS1 Lipase by Alanine Substitution.
    Zhao G; Wang J; Tang Q; Lan D; Wang Y
    Mol Biotechnol; 2018 Apr; 60(4):319-328. PubMed ID: 29450814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation.
    Kohno M; Enatsu M; Funatsu J; Yoshiizumi M; Kugimiya W
    J Biotechnol; 2001 May; 87(3):203-10. PubMed ID: 11334664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.