These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 8888582)
1. Spatial learning in deer mice: sex differences and the effects of endogenous opioids and 60 Hz magnetic fields. Kavaliers M; Ossenkopp KP; Prato FS; Innes DG; Galea LA; Kinsella DM; Perrot-Sinal TS J Comp Physiol A; 1996 Nov; 179(5):715-24. PubMed ID: 8888582 [TBL] [Abstract][Full Text] [Related]
2. Sex differences in the antinociceptive effects of the enkephalinase inhibitor, SCH 34826. Kavaliers M; Innes DG Pharmacol Biochem Behav; 1993 Dec; 46(4):777-80. PubMed ID: 8309954 [TBL] [Abstract][Full Text] [Related]
3. Sexually dimorphic spatial learning varies seasonally in two populations of deer mice. Galea LA; Kavaliers M; Ossenkopp KP; Innes D; Hargreaves EL Brain Res; 1994 Jan; 635(1-2):18-26. PubMed ID: 8173954 [TBL] [Abstract][Full Text] [Related]
5. Sex differences in conditioned taste aversion and in the effects of exposure to a specific pulsed magnetic field in deer mice Peromyscus maniculatus. Choleris E; Thomas AW; Ossenkopp K; Kavaliers M; Valsecchi P; Prato FS Physiol Behav; 2000 Nov 1-15; 71(3-4):237-49. PubMed ID: 11150555 [TBL] [Abstract][Full Text] [Related]
6. Antinociceptive effects of the enkephalinase inhibitor, SCH 34826, in the snail, Cepaea nemoralis. Saksida LM; Galea LA; Kavaliers M Peptides; 1993; 14(4):763-5. PubMed ID: 8234022 [TBL] [Abstract][Full Text] [Related]
7. Sex and day-night differences in opiate-induced responses of insular wild deer mice, Peromyscus maniculatus triangularis. Kavaliers M; Innes DG Pharmacol Biochem Behav; 1987 Jul; 27(3):477-82. PubMed ID: 3659070 [TBL] [Abstract][Full Text] [Related]
8. Evidence for the involvement of nitric oxide and nitric oxide synthase in the modulation of opioid-induced antinociception and the inhibitory effects of exposure to 60-Hz magnetic fields in the land snail. Kavaliers M; Choleris E; Prato FS; Ossenkopp K Brain Res; 1998 Oct; 809(1):50-7. PubMed ID: 9795129 [TBL] [Abstract][Full Text] [Related]
9. Exposure to stable flies reduces spatial learning in mice: involvement of endogenous opioid systems. Kavaliers M; Colwell DD Med Vet Entomol; 1995 Jul; 9(3):300-6. PubMed ID: 7548949 [TBL] [Abstract][Full Text] [Related]
10. Sex differences in magnetic field inhibition of morphine-induced responses of wild deer mice, Peromyscus maniculatus triangularis. Kavaliers M; Innes DG Physiol Behav; 1987; 40(5):559-62. PubMed ID: 3671517 [TBL] [Abstract][Full Text] [Related]
11. Effects of extremely low frequency magnetic field on anxiety level and spatial memory of adult rats. He LH; Shi HM; Liu TT; Xu YC; Ye KP; Wang S Chin Med J (Engl); 2011 Oct; 124(20):3362-6. PubMed ID: 22088536 [TBL] [Abstract][Full Text] [Related]
12. 50 Hz magnetic field effects on the performance of a spatial learning task by mice. Sienkiewicz ZJ; Haylock RG; Bartrum R; Saunders RD Bioelectromagnetics; 1998; 19(8):486-93. PubMed ID: 9849918 [TBL] [Abstract][Full Text] [Related]
13. Effects of exposure to a 50 Hz sinusoidal magnetic field during the early adolescent period on spatial memory in mice. Wang X; Zhao K; Wang D; Adams W; Fu Y; Sun H; Liu X; Yu H; Ma Y Bioelectromagnetics; 2013 May; 34(4):275-84. PubMed ID: 23355058 [TBL] [Abstract][Full Text] [Related]
14. Long-term exposure to extremely low-frequency magnetic fields impairs spatial recognition memory in mice. Fu Y; Wang C; Wang J; Lei Y; Ma Y Clin Exp Pharmacol Physiol; 2008 Jul; 35(7):797-800. PubMed ID: 18346171 [TBL] [Abstract][Full Text] [Related]
15. Sex differences in performance in the Morris water maze and the effects of initial nonstationary hidden platform training. Perrot-Sinal TS; Kostenuik MA; Ossenkopp KP; Kavaliers M Behav Neurosci; 1996 Dec; 110(6):1309-20. PubMed ID: 8986334 [TBL] [Abstract][Full Text] [Related]
16. Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory. Liu T; Wang S; He L; Ye K Neuroreport; 2008 Mar; 19(5):549-52. PubMed ID: 18388736 [TBL] [Abstract][Full Text] [Related]
17. Spatial learning and hippocampal volume in male deer mice: relations to age, testosterone and adrenal gland weight. Perrot-Sinal TS; Kavaliers M; Ossenkopp KP Neuroscience; 1998 Oct; 86(4):1089-99. PubMed ID: 9697116 [TBL] [Abstract][Full Text] [Related]
18. Deficits in spatial learning after exposure of mice to a 50 Hz magnetic field. Sienkiewicz ZJ; Haylock RG; Saunders RD Bioelectromagnetics; 1998; 19(2):79-84. PubMed ID: 9492163 [TBL] [Abstract][Full Text] [Related]
19. Acute exposure to a 50 Hz magnetic field impairs consolidation of spatial memory in rats. Jadidi M; Firoozabadi SM; Rashidy-Pour A; Sajadi AA; Sadeghi H; Taherian AA Neurobiol Learn Mem; 2007 Nov; 88(4):387-92. PubMed ID: 17768075 [TBL] [Abstract][Full Text] [Related]
20. Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Karimi SA; Salehi I; Shykhi T; Zare S; Komaki A Behav Brain Res; 2019 Feb; 359():630-638. PubMed ID: 30290199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]