These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8888611)

  • 21. Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival.
    Jolivet R; Gerstner W
    J Physiol Paris; 2004; 98(4-6):442-51. PubMed ID: 16274972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: an intracellular and computational study.
    Paré D; Lang EJ; Destexhe A
    Neuroscience; 1998 May; 84(2):377-402. PubMed ID: 9539211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power-Law Dynamics of Membrane Conductances Increase Spiking Diversity in a Hodgkin-Huxley Model.
    Teka W; Stockton D; Santamaria F
    PLoS Comput Biol; 2016 Mar; 12(3):e1004776. PubMed ID: 26937967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.
    Wang K; Riera J; Enjieu-Kadji H; Kawashima R
    Neural Comput; 2013 Jul; 25(7):1807-52. PubMed ID: 23607554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid integrate-and-fire model of a bursting neuron.
    Breen BJ; Gerken WC; Butera RJ
    Neural Comput; 2003 Dec; 15(12):2843-62. PubMed ID: 14629870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A two-variable model of somatic-dendritic interactions in a bursting neuron.
    Laing CR; Longtin A
    Bull Math Biol; 2002 Sep; 64(5):829-60. PubMed ID: 12391859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution.
    Shuai J; Bikson M; Hahn PJ; Lian J; Durand DM
    Biophys J; 2003 Mar; 84(3):2099-111. PubMed ID: 12609911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic background activity influences spatiotemporal integration in single pyramidal cells.
    Bernander O; Douglas RJ; Martin KA; Koch C
    Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11569-73. PubMed ID: 1763072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attractor dynamics in a modular network model of neocortex.
    Lundqvist M; Rehn M; Djurfeldt M; Lansner A
    Network; 2006 Sep; 17(3):253-76. PubMed ID: 17162614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How spike generation mechanisms determine the neuronal response to fluctuating inputs.
    Fourcaud-Trocmé N; Hansel D; van Vreeswijk C; Brunel N
    J Neurosci; 2003 Dec; 23(37):11628-40. PubMed ID: 14684865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rate models for conductance-based cortical neuronal networks.
    Shriki O; Hansel D; Sompolinsky H
    Neural Comput; 2003 Aug; 15(8):1809-41. PubMed ID: 14511514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fractional differentiation by neocortical pyramidal neurons.
    Lundstrom BN; Higgs MH; Spain WJ; Fairhall AL
    Nat Neurosci; 2008 Nov; 11(11):1335-42. PubMed ID: 18931665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational modeling of neuronal dynamics for systems analysis: application to neurons of the cardiorespiratory NTS in the rat.
    Schwaber JS; Graves EB; Paton JF
    Brain Res; 1993 Feb; 604(1-2):126-41. PubMed ID: 8457841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diversity of gain modulation by noise in neocortical neurons: regulation by the slow afterhyperpolarization conductance.
    Higgs MH; Slee SJ; Spain WJ
    J Neurosci; 2006 Aug; 26(34):8787-99. PubMed ID: 16928867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A self-organizing state-space-model approach for parameter estimation in hodgkin-huxley-type models of single neurons.
    Vavoulis DV; Straub VA; Aston JA; Feng J
    PLoS Comput Biol; 2012; 8(3):e1002401. PubMed ID: 22396632
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatial compartmentalization and functional impact of conductance in pyramidal neurons.
    Williams SR
    Nat Neurosci; 2004 Sep; 7(9):961-7. PubMed ID: 15322550
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Afferent synaptic drive of rat medial nucleus tractus solitarius neurons: dynamic simulation of graded vesicular mobilization, release, and non-NMDA receptor kinetics.
    Schild JH; Clark JW; Canavier CC; Kunze DL; Andresen MC
    J Neurophysiol; 1995 Oct; 74(4):1529-48. PubMed ID: 8989391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of time-delayed feedback in the firing pattern of thermally sensitive neurons.
    Sainz-Trapága M; Masoller C; Braun HA; Huber MT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031904. PubMed ID: 15524546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding input signals in time domain--a model approach.
    Feng J; Brown D
    J Comput Neurosci; 2004; 16(3):237-49. PubMed ID: 15114048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.