These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 8888613)

  • 1. Hebbian learning of context in recurrent neural networks.
    Brunel N
    Neural Comput; 1996 Nov; 8(8):1677-710. PubMed ID: 8888613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrospective and prospective persistent activity induced by Hebbian learning in a recurrent cortical network.
    Mongillo G; Amit DJ; Brunel N
    Eur J Neurosci; 2003 Oct; 18(7):2011-24. PubMed ID: 14622234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlations of cortical Hebbian reverberations: theory versus experiment.
    Amit DJ; Brunel N; Tsodyks MV
    J Neurosci; 1994 Nov; 14(11 Pt 1):6435-45. PubMed ID: 7965048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning attractors in an asynchronous, stochastic electronic neural network.
    Del Giudice P; Fusi S; Badoni D; Dante V; Amit DJ
    Network; 1998 May; 9(2):183-205. PubMed ID: 9861985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paradigmatic working memory (attractor) cell in IT cortex.
    Amit DJ; Fusi S; Yakovlev V
    Neural Comput; 1997 Jul; 9(5):1071-92. PubMed ID: 9188192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations.
    Yakovlev V; Fusi S; Berman E; Zohary E
    Nat Neurosci; 1998 Aug; 1(4):310-7. PubMed ID: 10195165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network.
    Brunel N; Carusi F; Fusi S
    Network; 1998 Feb; 9(1):123-52. PubMed ID: 9861982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attractor Dynamics in Networks with Learning Rules Inferred from In Vivo Data.
    Pereira U; Brunel N
    Neuron; 2018 Jul; 99(1):227-238.e4. PubMed ID: 29909997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex.
    Amit DJ; Brunel N
    Cereb Cortex; 1997; 7(3):237-52. PubMed ID: 9143444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The road to chaos by time-asymmetric Hebbian learning in recurrent neural networks.
    Molter C; Salihoglu U; Bersini H
    Neural Comput; 2007 Jan; 19(1):80-110. PubMed ID: 17134318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-based clustering: A 'landscape view' of multi-channel neural data for inference and dynamic complexity analysis.
    Baglietto G; Gigante G; Del Giudice P
    PLoS One; 2017; 12(4):e0174918. PubMed ID: 28369106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Storage capacity diverges with synaptic efficiency in an associative memory model with synaptic delay and pruning.
    Miyoshi S; Okada M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1215-27. PubMed ID: 15484896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of dynamic linkage of stable attractors across cortical networks in recalling long-term memory.
    Hoshino O; Zheng M; Kuroiwa K
    Biol Cybern; 2003 Mar; 88(3):163-76. PubMed ID: 12647224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consolidation of visual associative long-term memory in the temporal cortex of primates.
    Miyashita Y; Kameyama M; Hasegawa I; Fukushima T
    Neurobiol Learn Mem; 1998; 70(1-2):197-211. PubMed ID: 9753597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attractor-map versus autoassociation based attractor dynamics in the hippocampal network.
    Colgin LL; Leutgeb S; Jezek K; Leutgeb JK; Moser EI; McNaughton BL; Moser MB
    J Neurophysiol; 2010 Jul; 104(1):35-50. PubMed ID: 20445029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
    Alemi A; Baldassi C; Brunel N; Zecchina R
    PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention and working memory: a dynamical model of neuronal activity in the prefrontal cortex.
    Deco G; Rolls ET
    Eur J Neurosci; 2003 Oct; 18(8):2374-90. PubMed ID: 14622200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A network of coincidence detector neurons with periodic and chaotic dynamics.
    Watanabe M; Aihara K
    IEEE Trans Neural Netw; 2004 Sep; 15(5):980-6. PubMed ID: 15484874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal, unsupervised learning in invariant object recognition.
    Wallis G; Baddeley R
    Neural Comput; 1997 May; 9(4):883-94. PubMed ID: 11561573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.