BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8889166)

  • 1. Intermolecular coupling between loop 38-52 and the C-terminus in actin filaments.
    Kim E; Reisler E
    Biophys J; 1996 Oct; 71(4):1914-9. PubMed ID: 8889166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin-induced changes in F-actin: fluorescence probing of subdomain 2 by dansyl ethylenediamine attached to Gln-41.
    Kim E; Miller CJ; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1996 Mar; 70(3):1439-46. PubMed ID: 8785300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41.
    Kim E; Motoki M; Seguro K; Muhlrad A; Reisler E
    Biophys J; 1995 Nov; 69(5):2024-32. PubMed ID: 8580345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural effects of cofilin on longitudinal contacts in F-actin.
    Bobkov AA; Muhlrad A; Kokabi K; Vorobiev S; Almo SC; Reisler E
    J Mol Biol; 2002 Nov; 323(4):739-50. PubMed ID: 12419261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transglutaminase-induced cross-linking between subdomain 2 of G-actin and the 636-642 lysine-rich loop of myosin subfragment 1.
    Eligula L; Chuang L; Phillips ML; Motoki M; Seguro K; Muhlrad A
    Biophys J; 1998 Feb; 74(2 Pt 1):953-63. PubMed ID: 9533706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermolecular dynamics and function in actin filaments.
    Kim E; Reisler E
    Biophys Chem; 2000 Aug; 86(2-3):191-201. PubMed ID: 11026684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin.
    Moraczewska J; Wawro B; Seguro K; Strzelecka-Golaszewska H
    Biophys J; 1999 Jul; 77(1):373-85. PubMed ID: 10388764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-link between cys 374 and cys 10 of actin abolishes polymerizability and allows study of the properties of the "F-actin monomer".
    Heintz D; Faulstich H
    Biochemistry; 1996 Jan; 35(1):258-65. PubMed ID: 8555183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural implications of the chemical modification of Cys(10) on actin.
    Eli-Berchoer L; Reisler E; Muhlrad A
    Biophys J; 2000 Mar; 78(3):1482-9. PubMed ID: 10692333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody and peptide probes of interactions between the SH1-SH2 region of myosin subfragment 1 and actin's N-terminus.
    Cartoux L; Chen T; DasGupta G; Chase PB; Kushmerick MJ; Reisler E
    Biochemistry; 1992 Nov; 31(44):10929-35. PubMed ID: 1420204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural transition at actin's N-terminus in the actomyosin cross-bridge cycle.
    Hansen JE; Marner J; Pavlov D; Rubenstein PA; Reisler E
    Biochemistry; 2000 Feb; 39(7):1792-9. PubMed ID: 10677229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of myosin LYS-553 with the C-terminus and DNase I-binding loop of actin examined by fluorescence resonance energy transfer.
    Yengo CM; Chrin LR; Berger CL
    J Struct Biol; 2000 Sep; 131(3):187-96. PubMed ID: 11052891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence characterization of structural transitions at the strong actin binding motif in skeletal myosin affinity labeled at cysteine 540 with novel spectroscopic cysteaminyl mixed disulfides.
    Bertrand R; Derancourt J; Kassab R
    Biochemistry; 2000 Nov; 39(47):14626-37. PubMed ID: 11087419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin.
    Strzelecka-Golaszewska H; Wozniak A; Hult T; Lindberg U
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):713-21. PubMed ID: 8670143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of skeletal F-actin labeled on the NH2-terminal segment of residues 1-28.
    Bertrand R; Chaussepied P; Audemard E; Kassab R
    Eur J Biochem; 1989 May; 181(3):747-54. PubMed ID: 2525090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural connectivity in actin: effect of C-terminal modifications on the properties of actin.
    Crosbie RH; Miller C; Cheung P; Goodnight T; Muhlrad A; Reisler E
    Biophys J; 1994 Nov; 67(5):1957-64. PubMed ID: 7858132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding.
    Borovikov YS; Moraczewska J; Khoroshev MI; Strzelecka-Gołaszewska H
    Biochim Biophys Acta; 2000 Mar; 1478(1):138-51. PubMed ID: 10719182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Conformational changes of actin induced by strong or weak myosin subfragment-1 binding].
    Dedova IV; Avrova SV; Vikhoreva NN; Vikhorev RG; Hazlett TL; Van der Meer W; Dos Remedios CG; Borovikov IuS
    Tsitologiia; 2004; 46(8):719-34. PubMed ID: 15598019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence probing of yeast actin subdomain 3/4 hydrophobic loop 262-274. Actin-actin and actin-myosin interactions in actin filaments.
    Feng L; Kim E; Lee WL; Miller CJ; Kuang B; Reisler E; Rubenstein PA
    J Biol Chem; 1997 Jul; 272(27):16829-37. PubMed ID: 9201989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of myosin subfragment 1 with forms of monomeric actin.
    Ballweber E; Kiessling P; Manstein D; Mannherz HG
    Biochemistry; 2003 Mar; 42(10):3060-9. PubMed ID: 12627973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.