These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 8889195)

  • 1. Dielectric Dispersion Modulated Sensing of Yeast Suspension Electroporation.
    Pintarelli GB; da Silva JR; Yang W; Suzuki DOH
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-methods approach to follow up biomass by impedance spectroscopy: Bacillus thuringiensis fermentations as a study model.
    Díaz Pacheco A; Delgado-Macuil RJ; Larralde-Corona CP; Dinorín-Téllez-Girón J; Martínez Montes F; Martinez Tolibia SE; López Y López VE
    Appl Microbiol Biotechnol; 2022 Feb; 106(3):1097-1112. PubMed ID: 35037996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Spectroscopy Based Detection of Specific and Nonspecific Cellular Mechanisms.
    Stoneman MR; Raicu V
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Shock Response of Yeast Cells Characterised by Dielectrophoresis Force Measurement.
    Fernando-Juan GD; Rubio-Chavarría M; Beltrán P; Espinós FJ
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Simple and Double Yeast Cells Using Dielectrophoretic Force Measurement.
    García-Diego FJ; Rubio-Chavarría M; Beltrán P; Espinós FJ
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31484453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical Meanings of Fractal Behaviors of Water in Aqueous and Biological Systems with Open-Ended Coaxial Electrodes.
    Yagihara S; Kita R; Shinyashiki N; Saito H; Maruyama Y; Kawaguchi T; Shoji K; Saito T; Aoyama T; Shimazaki K; Matsumoto K; Fukuzaki M; Masuda H; Hiraiwa S; Asami K; Tokita M
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31181722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectric analysis and multi-cell electrofusion of the yeast Pichia pastoris for electrophysiological studies.
    Terpitz U; Letschert S; Bonda U; Spahn C; Guan C; Sauer M; Zimmermann U; Bamberg E; Zimmermann D; Sukhorukov VL
    J Membr Biol; 2012 Dec; 245(12):815-26. PubMed ID: 22872418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells.
    Ferrier GA; Hladio AN; Thomson DJ; Bridges GE; Hedayatipoor M; Olson S; Freeman MR
    Biomicrofluidics; 2008 Nov; 2(4):44102. PubMed ID: 19693366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput cell and particle characterization using isodielectric separation.
    Vahey MD; Voldman J
    Anal Chem; 2009 Apr; 81(7):2446-55. PubMed ID: 19253950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical stimulation of the energy metabolism in yeast cells using a planar Ti-Au-electrode interface.
    Reiher A; Warnke C; Radoch S; Witte H; Krtschil A; Mair T; Müller SC; Krost A
    J Bioenerg Biomembr; 2006 Apr; 38(2):143-8. PubMed ID: 17031550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli.
    Castellarnau M; Errachid A; Madrid C; Juárez A; Samitier J
    Biophys J; 2006 Nov; 91(10):3937-45. PubMed ID: 16950844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric single particle spectroscopy for measurement of dispersion.
    Schnelle T; Müller T; Fuhr G
    Med Biol Eng Comput; 1999 Mar; 37(2):264-71. PubMed ID: 10396833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified resistor-capacitor model for impedance, dielectrophoresis, electrorotation, and induced transmembrane potential.
    Gimsa J; Wachner D
    Biophys J; 1998 Aug; 75(2):1107-16. PubMed ID: 9675212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz.
    Hölzel R
    Biophys J; 1997 Aug; 73(2):1103-9. PubMed ID: 9251826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dielectric behavior of wild-type yeast and vacuole-deficient mutant over a frequency range of 10 kHz to 10 GHz.
    Asami K; Yonezawa T
    Biophys J; 1996 Oct; 71(4):2192-200. PubMed ID: 8889195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric behavior of budding yeast in cell separation.
    Asami K; Gheorghiu E; Yonezawa T
    Biochim Biophys Acta; 1998 Jul; 1381(2):234-40. PubMed ID: 9685659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric properties of yeast cells as simulated by the two-shell model.
    Raicu V; Raicu G; Turcu G
    Biochim Biophys Acta; 1996 Jun; 1274(3):143-8. PubMed ID: 8664306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric analysis of yeast cell growth.
    Asami K; Yonezawa T
    Biochim Biophys Acta; 1995 Aug; 1245(1):99-105. PubMed ID: 7654773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the yeast vacuole and its role in autophagy.
    Thumm M
    Microsc Res Tech; 2000 Dec; 51(6):563-72. PubMed ID: 11169858
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.