BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8889491)

  • 1. Evaluation of active oxygen effect on photosynthesis of Chlorella vulgaris.
    Hirayama S; Ueda R; Sugata K
    Free Radic Res; 1996 Sep; 25(3):247-54. PubMed ID: 8889491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of hydroxyl radical in intact cells of Chlorella vulgaris.
    Hirayama S; Ueda R; Sugata K
    Free Radic Res; 1995 Jul; 23(1):51-9. PubMed ID: 7647919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.
    Liu L; Zhu B; Wang GX
    Environ Sci Pollut Res Int; 2015 May; 22(10):7766-75. PubMed ID: 25672875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris.
    Qian L; Qi S; Cao F; Zhang J; Zhao F; Li C; Wang C
    Environ Pollut; 2018 Nov; 242(Pt A):171-181. PubMed ID: 29980035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of photosynthetic O2 evolution in Chlorella vulgaris under high light and increased CO2 concentration as a sign of acclimation to phosphate deficiency.
    Kozłowska-Szerenos B; Bialuk I; Maleszewski S
    Plant Physiol Biochem; 2004 May; 42(5):403-9. PubMed ID: 15191743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant effect of the marine algae Chlorella vulgaris against naphthalene-induced oxidative stress in the albino rats.
    Vijayavel K; Anbuselvam C; Balasubramanian MP
    Mol Cell Biochem; 2007 Sep; 303(1-2):39-44. PubMed ID: 17457522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur Deprivation Results in Oxidative Perturbation in Chlorella sorokiniana (211/8k).
    Salbitani G; Vona V; Bottone C; Petriccione M; Carfagna S
    Plant Cell Physiol; 2015 May; 56(5):897-905. PubMed ID: 25647328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris.
    Yun YS; Park JM
    Biotechnol Bioeng; 2003 Aug; 83(3):303-11. PubMed ID: 12783486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of lipid biosynthesis in Chlorella pyrenoidosa to intracellular reactive oxygen species level under stress conditions.
    Zhang L; Liao C; Yang Y; Wang YZ; Ding K; Huo D; Hou C
    Bioresour Technol; 2019 Sep; 287():121414. PubMed ID: 31078813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system.
    Mallick N
    J Plant Physiol; 2004 May; 161(5):591-7. PubMed ID: 15202716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa.
    Deng Y; Zhang W; Qin Y; Liu R; Zhang L; Wang Z; Zhou Z; Diao J
    Aquat Toxicol; 2019 May; 210():129-138. PubMed ID: 30851487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of ROS through proficient modulations of antioxidative defense system maintains the structural and functional integrity of photosynthetic apparatus and confers drought tolerance in the facultative halophyte Salvadora persica L.
    Rangani J; Panda A; Patel M; Parida AK
    J Photochem Photobiol B; 2018 Dec; 189():214-233. PubMed ID: 30396132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyl radical is the major causative factor in stress-induced gastric ulceration.
    Das D; Bandyopadhyay D; Bhattacharjee M; Banerjee RK
    Free Radic Biol Med; 1997; 23(1):8-18. PubMed ID: 9165292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa.
    Liu R; Deng Y; Zhang W; Zhang L; Wang Z; Li B; Diao J; Zhou Z
    Ecotoxicol Environ Saf; 2019 Dec; 185():109691. PubMed ID: 31563746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris.
    Qian H; Xu X; Chen W; Jiang H; Jin Y; Liu W; Fu Z
    Chemosphere; 2009 Apr; 75(3):368-75. PubMed ID: 19171365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella.
    Singh Ak; Sharma L; Mallick N
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):223-7. PubMed ID: 15327879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of inhibitory action of the local anaesthetic trimecaine on the growth of algae (Chlorella vulgaris).
    Sersen F; Král'ová K
    Gen Physiol Biophys; 1994 Aug; 13(4):329-35. PubMed ID: 7890148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal induced inhibition of photosynthesis, photosynthetic electron transport chain and ATP content of Anabaena doliolum and Chlorella vulgaris: interaction with exogenous ATP.
    Mallick N; Rai LC
    Biomed Environ Sci; 1992 Sep; 5(3):241-50. PubMed ID: 1449660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris.
    Qian H; Chen W; Li J; Wang J; Zhou Z; Liu W; Fu Z
    Aquat Toxicol; 2009 May; 92(4):250-7. PubMed ID: 19297032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive Effects of Temperature and UV Radiation on Photosynthesis of Chlorella Strains from Polar, Temperate and Tropical Environments: Differential Impacts on Damage and Repair.
    Wong CY; Teoh ML; Phang SM; Lim PE; Beardall J
    PLoS One; 2015; 10(10):e0139469. PubMed ID: 26427046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.