These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 8889723)
1. In-vitro and in-vivo evaluation of a new amphotericin B emulsion-based delivery system. Tabosa Do Egito ES; Appel M; Fessi H; Barratt G; Puisieux F; Devissaguet JP J Antimicrob Chemother; 1996 Sep; 38(3):485-97. PubMed ID: 8889723 [TBL] [Abstract][Full Text] [Related]
2. Efficacy evaluation of a novel submicron amphotericin B emulsion in murine candidiasis. Levy MY; Polacheck I; Barenholz Y; Benita S J Med Vet Mycol; 1993; 31(3):207-18. PubMed ID: 8360812 [TBL] [Abstract][Full Text] [Related]
3. Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. Espuelas MS; Legrand P; Campanero MA; Appel M; Chéron M; Gamazo C; Barratt G; Irache JM J Antimicrob Chemother; 2003 Sep; 52(3):419-27. PubMed ID: 12888593 [TBL] [Abstract][Full Text] [Related]
4. In-vivo therapeutic efficacy in experimental murine mycoses of a new formulation of deoxycholate-amphotericin B obtained by mild heating. Petit C; Chéron M; Joly V; Rodrigues JM; Bolard J; Gaboriau F J Antimicrob Chemother; 1998 Dec; 42(6):779-85. PubMed ID: 10052902 [TBL] [Abstract][Full Text] [Related]
5. An emulsion formulation of amphotericin B improves the therapeutic index when treating systemic murine candidiasis. Kirsh R; Goldstein R; Tarloff J; Parris D; Hook J; Hanna N; Bugelski P; Poste G J Infect Dis; 1988 Nov; 158(5):1065-70. PubMed ID: 3183418 [TBL] [Abstract][Full Text] [Related]
6. Activity of MS-8209, a nonester amphotericin B derivative, in treatment of experimental systemic mycoses. Saint-Julien L; Joly V; Seman M; Carbon C; Yeni P Antimicrob Agents Chemother; 1992 Dec; 36(12):2722-8. PubMed ID: 1482139 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Gangadhar KN; Adhikari K; Srichana T Int J Pharm; 2014 Aug; 471(1-2):430-8. PubMed ID: 24907597 [TBL] [Abstract][Full Text] [Related]
8. Efficacy and toxicity evaluation of new amphotericin B micelle systems for brain fungal infections. Moreno-Rodríguez AC; Torrado-Durán S; Molero G; García-Rodríguez JJ; Torrado-Santiago S Int J Pharm; 2015 Oct; 494(1):17-22. PubMed ID: 26256151 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of renal toxicity and antifungal activity of free and liposomal amphotericin B following a single intravenous dose to diabetic rats with systemic candidiasis. Wasan KM; Conklin JS Antimicrob Agents Chemother; 1996 Aug; 40(8):1806-10. PubMed ID: 8843285 [TBL] [Abstract][Full Text] [Related]
10. Treatment of murine candidiasis and cryptococcosis with amphotericin B incorporated into egg lecithin-bile salt mixed micelles. Brajtburg J; Elberg S; Travis SJ; Kobayashi GS Antimicrob Agents Chemother; 1994 Feb; 38(2):294-9. PubMed ID: 8192455 [TBL] [Abstract][Full Text] [Related]
11. Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome) and fluconazole in the treatment of systemic candidosis in immunocompetent and leucopenic mice. van Etten EW; van den Heuvel-de Groot C; Bakker-Woudenberg IA J Antimicrob Chemother; 1993 Nov; 32(5):723-39. PubMed ID: 8125837 [TBL] [Abstract][Full Text] [Related]
12. Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. Zia Q; Khan AA; Swaleha Z; Owais M Int J Nanomedicine; 2015; 10():1769-90. PubMed ID: 25784804 [TBL] [Abstract][Full Text] [Related]
13. Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS), with commercial lipid-based formulations. Fukui H; Koike T; Nakagawa T; Saheki A; Sonoke S; Tomii Y; Seki J Int J Pharm; 2003 Nov; 267(1-2):101-12. PubMed ID: 14602388 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of alternative dosing regimens of poly-aggregated amphotericin B. Espada R; Valdespina S; Molero G; Dea MA; Ballesteros MP; Torrado JJ Int J Antimicrob Agents; 2008 Jul; 32(1):55-61. PubMed ID: 18534826 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological parameters of intravenously administered amphotericin B in rats: comparison of the conventional formulation with amphotericin B associated with a triglyceride-rich emulsion. Souza LC; Campa A J Antimicrob Chemother; 1999 Jul; 44(1):77-84. PubMed ID: 10459813 [TBL] [Abstract][Full Text] [Related]
16. High purity amphotericin B. Cleary JD; Chapman SW; Swiatlo E; Kramer R J Antimicrob Chemother; 2007 Dec; 60(6):1331-40. PubMed ID: 17921178 [TBL] [Abstract][Full Text] [Related]
17. Novel oral amphotericin B formulation (iCo-010) remains highly effective against murine systemic candidiasis following exposure to tropical temperature. Wasan KM; Sivak O; Bartlett K; Wasan EK; Gershkovich P Drug Dev Ind Pharm; 2015; 41(9):1425-30. PubMed ID: 25170660 [TBL] [Abstract][Full Text] [Related]
18. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Radwan MA; AlQuadeib BT; Šiller L; Wright MC; Horrocks B Drug Deliv; 2017 Nov; 24(1):40-50. PubMed ID: 28155565 [TBL] [Abstract][Full Text] [Related]
19. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Tang X; Zhu H; Sun L; Hou W; Cai S; Zhang R; Liu F Int J Nanomedicine; 2014; 9():5403-13. PubMed ID: 25473279 [TBL] [Abstract][Full Text] [Related]
20. Amphotericin B loaded ethyl cellulose nanoparticles with magnified oral bioavailability for safe and effective treatment of fungal infection. Kaur K; Kumar P; Kush P Biomed Pharmacother; 2020 Aug; 128():110297. PubMed ID: 32480227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]