These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 8889942)

  • 1. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity.
    Blagburn JM; Sosa MA; Blanco RE
    J Comp Neurol; 1996 Sep; 373(4):511-28. PubMed ID: 8889942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of synapses between identified sensory neurones and giant interneurones in the cockroach Periplaneta americana.
    Blagburn JM; Beadle DJ; Sattelle DB
    J Embryol Exp Morphol; 1985 Apr; 86():227-46. PubMed ID: 4031743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic specificity in the first instar cockroach: patterns of monosynaptic input from filiform hair afferents to giant interneurons.
    Blagburn JM
    J Comp Physiol A; 1989 Nov; 166(1):133-42. PubMed ID: 2600884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specificity of filiform hair afferent synapses onto giant interneurons in Periplaneta americana: anatomy is not a sufficient determinant.
    Blagburn JM; Thompson KS
    J Comp Neurol; 1990 Dec; 302(2):255-71. PubMed ID: 2289973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation of filiform hair position with sensory afferent morphology and synaptic connections in the second instar cockroach.
    Thompson KS; Blagburn JM; Gibbon CR; Bacon JP
    J Comp Neurol; 1992 Jun; 320(2):213-27. PubMed ID: 1619050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional information determines the anatomy and synaptic specificity of cockroach filiform hair afferents using independent mechanisms.
    Blagburn JM; Blanco RE; Thompson KS; Bacon JP
    J Comp Physiol A; 1991 Nov; 169(5):607-14. PubMed ID: 1724462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity of synapse formation in the cockroach.
    Blagburn JM
    P R Health Sci J; 1988 Aug; 7(2):171-6. PubMed ID: 2847212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic effects of biogenic amines modulating synaptic transmission between identified sensory neurons and giant interneurons in the first instar cockroach.
    Hill ES; Blagburn JM
    J Comp Physiol A; 2001 Oct; 187(8):633-45. PubMed ID: 11763961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust.
    Boyan GS
    J Neurosci; 1988 Aug; 8(8):2748-57. PubMed ID: 3411352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic connections between identified neuron types in the antennal lobe glomeruli of the cockroach, Periplaneta americana: I. Uniglomerular projection neurons.
    Distler PG; Boeckh J
    J Comp Neurol; 1997 Feb; 378(3):307-19. PubMed ID: 9034893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic input to cochlear nucleus dendrites that receive medial olivocochlear synapses.
    Benson TE; Berglund AM; Brown MC
    J Comp Neurol; 1996 Jan; 365(1):27-41. PubMed ID: 8821439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of neurons reveals processing areas and rules for synaptic connectivity in the cricket nervous system.
    Killian KA; Merritt DJ; Murphey RK
    J Neurobiol; 1993 Sep; 24(9):1187-206. PubMed ID: 8409977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regeneration of cercal filiform hair sensory neurons in the first-instar cockroach restores escape behavior.
    Stern M; Ediger VL; Gibbon CR; Blagburn JM; Bacon JP
    J Neurobiol; 1997 Oct; 33(4):439-58. PubMed ID: 9322160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target neuron specification of short-term synaptic facilitation and depression in the cricket CNS.
    Killian KA; Murphey RK
    J Neurobiol; 1998 Dec; 37(4):700-14. PubMed ID: 9858269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of synaptic connections between muscle sensory and motor neurons: anatomical evidence that postsynaptic dendrites grow into a preformed sensory neuropil.
    Jackson PC; Frank E
    J Comp Neurol; 1987 Jan; 255(4):538-47. PubMed ID: 3029187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of engrailed in an array of identified sensory neurons: comparison with position, axonal arborization, and synaptic connectivity.
    Blagburn JM; Gibbon CR; Bacon JP
    J Neurobiol; 1995 Dec; 28(4):493-505. PubMed ID: 8592109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of axons and synaptic connections by touch sensory neurons in the leech central nervous system.
    Macagno ER; Muller KJ; DeRiemer SA
    J Neurosci; 1985 Sep; 5(9):2510-21. PubMed ID: 2993546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ectopic sensory neurons in mutant cockroaches compete with normal cells for central targets.
    Bacon JP; Blagburn JM
    Development; 1992 Jul; 115(3):773-84. PubMed ID: 1425353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.