BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 8890285)

  • 1. Electrophysiological changes of CA1 pyramidal neurons following transient forebrain ischemia: an in vivo intracellular recording and staining study.
    Xu ZC; Pulsinelli WA
    J Neurophysiol; 1996 Sep; 76(3):1689-97. PubMed ID: 8890285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo.
    Gao TM; Howard EM; Xu ZC
    J Neurophysiol; 1998 Dec; 80(6):2860-9. PubMed ID: 9862890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo.
    Gao TM; Pulsinelli WA; Xu ZC
    Neuroscience; 1999 Mar; 90(3):771-80. PubMed ID: 10218778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological changes of CA3 neurons and dentate granule cells following transient forebrain ischemia.
    Howard EM; Gao TM; Pulsinelli WA; Xu ZC
    Brain Res; 1998 Jul; 798(1-2):109-18. PubMed ID: 9666096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo.
    Gao TM; Pulsinelli WA; Xu ZC
    Neuroscience; 1998 Nov; 87(2):371-83. PubMed ID: 9740399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of CA1 pyramidal neurons in rat hippocampus to transient forebrain ischemia: an in vivo intracellular recording study.
    Xu ZC; Pulsinelli WA
    Neurosci Lett; 1994 Apr; 171(1-2):187-91. PubMed ID: 8084488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential changes of potassium currents in CA1 pyramidal neurons after transient forebrain ischemia.
    Chi XX; Xu ZC
    J Neurophysiol; 2000 Dec; 84(6):2834-43. PubMed ID: 11110813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurophysiological changes of spiny neurons in rat neostriatum after transient forebrain ischemia: an in vivo intracellular recording and staining study.
    Xu ZC
    Neuroscience; 1995 Aug; 67(4):823-36. PubMed ID: 7545798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential changes of synaptic transmission in spiny neurons of rat neostriatum following transient forebrain ischemia.
    Gajendiran M; Ling GY; Pang Z; Xu ZC
    Neuroscience; 2001; 105(1):139-52. PubMed ID: 11483308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced calcium uptake by CA1 pyramidal cell dendrites in the postischemic phase despite subnormal evoked field potentials: excitatory amino acid receptor dependency and relationship to neuronal damage.
    Andiné P; Jacobson I; Hagberg H
    J Cereb Blood Flow Metab; 1992 Sep; 12(5):773-83. PubMed ID: 1324252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex.
    Kawaguchi Y
    J Neurophysiol; 1993 Feb; 69(2):416-31. PubMed ID: 8459275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological recordings from rat hippocampus slices following in vivo brain ischemia.
    Jensen MS; Lambert JD; Johansen FF
    Brain Res; 1991 Jul; 554(1-2):166-75. PubMed ID: 1657285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiological changes associated with selective neuronal damage in hippocampus following transient forebrain ischemia.
    Xu ZC; Gao TM; Ren Y
    Biol Signals Recept; 1999; 8(4-5):294-308. PubMed ID: 10494015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus.
    Perreault P; Avoli M
    J Neurophysiol; 1989 May; 61(5):953-70. PubMed ID: 2566657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depressed responses to applied and synaptically-released GABA in CA1 pyramidal cells, but not in CA1 interneurons, after transient forebrain ischemia.
    Zhan RZ; Nadler JV; Schwartz-Bloom RD
    J Cereb Blood Flow Metab; 2006 Jan; 26(1):112-24. PubMed ID: 15959457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postischemic alterations of complex spike cell discharges and evoked potentials in rat hippocampal CA1 region.
    Furukawa K; Yamana K; Kogure K
    Acta Neurol Scand; 1992 Aug; 86(2):142-7. PubMed ID: 1329428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased intracellular Ca2+ concentration in the hippocampal CA1 area during global ischemia and reperfusion in the rat: a possible cause of delayed neuronal death.
    Nakamura T; Minamisawa H; Katayama Y; Ueda M; Terashi A; Nakamura K; Kudo Y
    Neuroscience; 1999 Jan; 88(1):57-67. PubMed ID: 10051189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.