These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 8890305)

  • 1. Theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending.
    Goldberg JM
    J Neurophysiol; 1996 Sep; 76(3):1942-57. PubMed ID: 8890305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmission between the type I hair cell and its calyx ending.
    Goldberg JM
    Ann N Y Acad Sci; 1996 Jun; 781():474-88. PubMed ID: 8694437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.
    Contini D; Zampini V; Tavazzani E; Magistretti J; Russo G; Prigioni I; Masetto S
    Neuroscience; 2012 Dec; 227():232-46. PubMed ID: 23032932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of K
    Contini D; Price SD; Art JJ
    J Physiol; 2017 Feb; 595(3):777-803. PubMed ID: 27633787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K
    Spaiardi P; Tavazzani E; Manca M; Russo G; Prigioni I; Biella G; Giunta R; Johnson SL; Marcotti W; Masetto S
    Neuroscience; 2020 Feb; 426():69-86. PubMed ID: 31846752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potassium accumulation between type I hair cells and calyx terminals in mouse crista.
    Lim R; Kindig AE; Donne SW; Callister RJ; Brichta AM
    Exp Brain Res; 2011 May; 210(3-4):607-21. PubMed ID: 21350807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonquantal transmission at the vestibular hair cell-calyx synapse: K
    Govindaraju AC; Quraishi IH; Lysakowski A; Eatock RA; Raphael RM
    Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2207466120. PubMed ID: 36595693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic cleft microenvironment influences potassium permeation and synaptic transmission in hair cells surrounded by calyx afferents in the turtle.
    Contini D; Holstein GR; Art JJ
    J Physiol; 2020 Feb; 598(4):853-889. PubMed ID: 31623011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The receptor potential in type I and type II vestibular system hair cells: a model analysis.
    Soto E; Vega R; Budelli R
    Hear Res; 2002 Mar; 165(1-2):35-47. PubMed ID: 12031513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells.
    Wangemann P; Shen Z; Liu J
    Hear Res; 1996 Oct; 100(1-2):201-10. PubMed ID: 8922995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantal component of synaptic transmission from sensory hair cells to the vestibular calyx.
    Highstein SM; Mann MA; Holstein GR; Rabbitt RD
    J Neurophysiol; 2015 Jun; 113(10):3827-35. PubMed ID: 25878150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantal and nonquantal transmission in calyx-bearing fibers of the turtle posterior crista.
    Holt JC; Chatlani S; Lysakowski A; Goldberg JM
    J Neurophysiol; 2007 Sep; 98(3):1083-101. PubMed ID: 17596419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog.
    Cochran SL
    Neuroscience; 1995 Oct; 68(4):1147-65. PubMed ID: 8544989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista.
    Bao H; Wong WH; Goldberg JM; Eatock RA
    J Neurophysiol; 2003 Jul; 90(1):155-64. PubMed ID: 12843307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent currents in isolated vestibular afferent calyx terminals.
    Rennie KJ; Streeter MA
    J Neurophysiol; 2006 Jan; 95(1):26-32. PubMed ID: 16162827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biophysical model of the inner hair cell: the contribution of potassium currents to peripheral auditory compression.
    Lopez-Poveda EA; Eustaquio-Martín A
    J Assoc Res Otolaryngol; 2006 Sep; 7(3):218-35. PubMed ID: 16718614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence That Ultrafast Nonquantal Transmission Underlies Synchronized Vestibular Action Potential Generation.
    Pastras CJ; Curthoys IS; Asadnia M; McAlpine D; Rabbitt RD; Brown DJ
    J Neurosci; 2023 Oct; 43(43):7149-7157. PubMed ID: 37775302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postsynaptic calcium, but not cumulative depolarization, is necessary for the induction of associative plasticity in Hermissenda.
    Matzel LD; Rogers RF
    J Neurosci; 1993 Dec; 13(12):5029-40. PubMed ID: 8254359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vestibular role of KCNQ4 and KCNQ5 K+ channels revealed by mouse models.
    Spitzmaul G; Tolosa L; Winkelman BH; Heidenreich M; Frens MA; Chabbert C; de Zeeuw CI; Jentsch TJ
    J Biol Chem; 2013 Mar; 288(13):9334-44. PubMed ID: 23408425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channeling your inner ear potassium: K(+) channels in vestibular hair cells.
    Meredith FL; Rennie KJ
    Hear Res; 2016 Aug; 338():40-51. PubMed ID: 26836968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.