These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8890561)

  • 61. Integral protein linkage and the bilayer-skeletal separation energy in red blood cells.
    Butler J; Mohandas N; Waugh RE
    Biophys J; 2008 Aug; 95(4):1826-36. PubMed ID: 18390600
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape.
    Sheetz MP
    Semin Hematol; 1983 Jul; 20(3):175-88. PubMed ID: 6353589
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computer simulation of a model network for the erythrocyte cytoskeleton.
    Boal DH
    Biophys J; 1994 Aug; 67(2):521-9. PubMed ID: 7948670
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular Resolution Mapping of Erythrocyte Cytoskeleton by Ultrastructure Expansion Single-Molecule Localization Microscopy.
    Hou M; Xing F; Yang J; Hu F; Pan L; Xu J
    Small Methods; 2023 Feb; 7(2):e2201243. PubMed ID: 36543363
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A mechanism of formation of protein-free regions in the red cell membrane: the rupture of the membrane skeleton.
    Kozlov MM; Chernomordik LV; Markin VS
    J Theor Biol; 1990 Jun; 144(3):347-65. PubMed ID: 2395376
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Protofilament and hexagon: a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton.
    Sung LA; Vera C
    Ann Biomed Eng; 2003 Dec; 31(11):1314-26. PubMed ID: 14758922
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteome analysis of the triton-insoluble erythrocyte membrane skeleton.
    Basu A; Harper S; Pesciotta EN; Speicher KD; Chakrabarti A; Speicher DW
    J Proteomics; 2015 Oct; 128():298-305. PubMed ID: 26271157
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evidence for age-related deamidation reactions in erythrocyte p55 and glycophorins C and D: implications for signal transduction involving tumour-suppressor proteins in higher eukaryotes.
    Lofthouse JT
    Med Hypotheses; 1998 Oct; 51(4):321-4. PubMed ID: 9824839
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane.
    Boal DH; Boey SK
    Biophys J; 1995 Aug; 69(2):372-9. PubMed ID: 8527650
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Cytoskeleton of erythrocyte membranes in hemolytic anemia].
    Takakuwa Y
    Nihon Rinsho; 1996 Sep; 54(9):2300-3. PubMed ID: 8890554
    [No Abstract]   [Full Text] [Related]  

  • 71. Model of red blood cell membrane skeleton: electrical and mechanical properties.
    Kozlov MM; Markin VS
    J Theor Biol; 1987 Dec; 129(4):439-52. PubMed ID: 3455470
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification of a functional role for human erythrocyte sialoglycoproteins beta and gamma.
    Reid ME; Chasis JA; Mohandas N
    Blood; 1987 Apr; 69(4):1068-72. PubMed ID: 3828531
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations.
    Stokke BT; Mikkelsen A; Elgsaeter A
    Eur Biophys J; 1986; 13(4):219-33. PubMed ID: 3709420
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Intertwined αβ spectrin meeting helical actin protofilament in the erythrocyte membrane skeleton: wrap-around vs. point-attachment.
    Sche P; Vera C; Sung LA
    Ann Biomed Eng; 2011 Jul; 39(7):1984-93. PubMed ID: 21416170
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Multiscale simulation of erythrocyte membranes.
    Peng Z; Asaro RJ; Zhu Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031904. PubMed ID: 20365767
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A model of spectrin as a concertina in the erythrocyte membrane skeleton.
    Bloch RJ; Pumplin DW
    Trends Cell Biol; 1992 Jul; 2(7):186-9. PubMed ID: 14731498
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The elliptocyte: a study of the relationship between cell shape and membrane structure using the camelid erythrocyte as a model.
    Omorphos SA; Hawkey CM; Rice-Evans C
    Comp Biochem Physiol B; 1989; 94(4):789-95. PubMed ID: 2605918
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Gaps in the erythrocyte membrane skeleton: a stretched net model.
    Saxton MJ
    J Theor Biol; 1992 Apr; 155(4):517-36. PubMed ID: 1619964
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Scanning tunneling microscopy of human erythrocyte membranes.
    Gaczynska M; Chwialkowski M; Olejniczak W; Wojczuk S; Bartosz G
    Biochem Biophys Res Commun; 1991 Dec; 181(2):600-3. PubMed ID: 1755843
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dynamic mechanisms for membrane skeleton transitions.
    Bonilla-Quintana M; Ghisleni A; Gauthier N; Rangamani P
    bioRxiv; 2024 May; ():. PubMed ID: 38746295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.